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Motivation: Quantum advantage in Quantum chemistry ?

Hermitian matrix

/

Quantum system A Quantum system B — _
Ground state er}érgy estimation (GSE, informal):

Given a Hamiltonian H,
compute its ground state energy A,(H)

up to accuracy § \

“simulation”

N

a killer app for quantum computing ? Smallest eigenvalue

The exponential quantum advantage hypothesis [LLZ+, Nat. Comm.’23]:

For a large set of relevant (“generic”) chemistry problems, GSE may be completed exponentially more
quickly (as a function of system size) on a quantum versus classical computer

But does this statement have any rigorous footing?



The local Hamiltonian problem

LH with k > 2,8 = 1/poly(n)

2D lattice
~
Local Hamiltonianlk, 6]

Input: H = )./, H; on n qubits with
|H|| < 1, where each H; acts on at most
k qubits,a,b € Rst.b—a =6 > 0.

Interacting bosons/fermions

Stoquastic FF

1-local

Promise: 1g(H) < aordy(H) = b P

Output:
 YESifAy(H) <a

\NO if Ao (H) = b /

/
How to modify this sych that it

becomes 3 BQP-complete problem?

Diagonal LH




What is proposed in practice?

Quantum system A Quantum system B

“simulation”

1. Ground state approximation:
A heuristic algorithm (e.g., Hartree-Fock) is used to obtain the description of a
|1), which is hoped to have ‘good’ fidelity with [y,).

2. Ground state energy approximation:
Quantum phase estimation is used on |) to estimate Ay (H).

Quantum advantage in ground state energy approximation?




The guided local Hamiltonian problem (GLH)

/Guided local Hamiltonian[k, &, /] \

Input: H = )i, H; on n qubits, where
each H; acts on at most k qubits, ||H|| < 1,
parameters a,b € Rst. b—a =>8§ >0,
and a description of semi-classical
quantum state

u e c?".

Promises: Ay(H) < aorAy(H) = b and
IMoul|* = ¢

(ITy: projection into the space spanned by the ground states)

Output:
 YESifAy(H) < a
* NOifAy(H) =b

* semi-classical: efficient classical description (+ classically samplable)

SUSTech-Nagoya 2022 ]

[GL'22]: BQP-completeness results for GLH in
the precision setting 6 = 0(1/poly(n)) when

Differs from the
* Hhaslocalityk 26 — q)a-setting

. . . 1 1 !
.(The fidelity is Z € (poly(n) o W)

[GL'22]: The problem is in BPP when the
desired precision is 6 = Q(1) (under sampling
assumptions)



y

This work

local Hamiltonianlk, 6, < |

Input: H = )i, H; on n qubits, where
each H; acts on at most k qubits, ||H|| < 1,
parameters a,b € Rst. b—a =>8§ >0,
and

Promises: Ay(H) < aorAy(H) = b and

(ITy: projection into the space spanned by the ground states)
Output:

e YESifAy(H) <a

* NOifdg(H) = b

* semi-classical: efficient classical description (+ classically samplable)

BQP-completeness results for GLH in the precision
setting § = O(1/poly(n)) when

: (E(

H is physically motivated

k> 2 — improvement, optimal

1
poly(n)’

1
poly(n)

)_, improvement, optimal

XY Hamiltonian on 2D lattice
Antiferromagnetic XY Hamiltonian
Heisenberg Hamiltonian on 2D lattice
Antiferromagnetic Heisenberg Hamiltonian

YV VYV

HXY -
(Lj)EE

]i'j(XX + YY)EJ‘ Hpeis = ]i_j(XX +YY + ZZ)i_j

(LiYeE

Quantum advantage (assuming BPP#BQP) for GLH
for physically motivated Hamiltonians



Proof overview

@ GLH instance
BQP- decision —

circuit

* Circuit-to-Hamiltonian I 1 — 1 /poly(n) overlap
construction (as in [GL'22])

* Perturbative analysis Subset state |uy)
of the ground state (new)
@ GLH instance
‘ L. ‘ 2-local, Physically
A series of 1 — 1/poly(n) overlap
Perturbative
Simulation (new) iiiiiii iiiii mii




Proof sketch (U: Encoding the BQP decision problem into GLH

/Ux: Quantum circuit that decides x

SAME as [GL'22]

l

~

Uy

l Circuit-to-Hamiltonian construction

H; =A (Hin + Hprop + Hstab) + Hout

Pre-idling

——
lx) 7 HIH e {Yes:p12a=1—2‘"

10...0) —TH U | No:p; <f =27"

|¢"hi5t> =

VM +1
1/poly(n) gap

* The unique ground state is

M
Z UiUp—y - - Ur [2,0) @ [t)
t=0

1 —1/poly(n) overlap
for long idling

J.;\I.r

Take large enough A, and apply long enough idling
Our contribution: better analysis by perturbation
theory (e.g., Schrieffer-Wolf transformation )

* 1—1/poly(n) overlap between
|Ynise) and the ground state of Hy
(instead of 1/2-1/ poly(n) in the analysis from [GL'22])

* The ground state energies in the YES/NO cases
have 1/poly(n) gap



Proof overview

@ GLH instance
BQP- decision —

circuit

* Circuit-to-Hamiltonian I 1 — 1 /poly(n) overlap
construction (as in [GL'22])

* Perturbative analysis Subset state |uy)
of the ground state (new)
@ GLH instance
‘ L. ‘ 2-local, Physically
A series of 1 — 1/poly(n) overlap
Perturbative
Simulation (new) iiiiiii iiiii mii




Proof sketch (2 : Reduction to 2-local physically motivated Hamiltonians

Apply a chain of Perturbative simulation

H — Hsparse — Hsparsez-tocat — —— Hppys
* Preserve the of the original Hamiltonian
* Preserve the of the original guiding state

H H 4

4 1 This is possible because the target families of Hamiltonians
are [ZA21].

They can simulate any O(1)-local n-qubit Hamiltonian
up to polynomially large A, e~ 1

Only that preserve the semi-classical property appear!

(®; V) (1) ®10) RID R R |+y) @ - ® |+,) )

Subspace encoding  Subset state mediator qubits



Summary

* Previous result [GL, STOC22] has shown the BQP-completeness (classical
intractability) of the guided local Hamiltonian problem. However, the locality
and the approximation parameter were not optimal. Also, it was not known if
the BQP-hardness persists for physically motivated Hamiltonians

* We have shown the BQP-completeness of estimating the ground state energy of
physically motivated Hamiltonians in the guided setting while improving the

. S 1 1 1
locality (6—2) and the approximation parameter ( 2 " Py - 1 - oLy D )



Future directions

* Average-case classical hardness of guided local Hamiltonian problem?

Related to the quantum PCP conjecture ]

* The promise gap can be improved to ©(1/n)?

(instead of 1/poly(n))



Quantum PCP Conjecture

LH(k,a,b) “Local Hamiltonian problem” (for a < b)

no guiding vector!

iInput: a k-local Hamiltonian H acting on n qubits such that ||H|| < 1
promise: either Ay(H) < a or Ay(H) = b holds
goal: decide which of Ay(H) < a or A;(H) = b holds

_— Currently: 6(1/n3)

known:
[Kitaev et al.

02,06]

// (similar in this work)
—

There exist a,b € [-1,1] with b-a&1/poly(n) such that i(fna;rgvzz (say, to
LH(2,a,b)is ({MA-hard. omy?

Quantum generalization of the class NP
“there exist local Hamiltonians for which estimating the ground
energy with inverse-polynomial precision is very hard”

Quantum PCP |There exist k=O(1) and a,b € [-1,1] with b-a = Q(1)
conjecture: such that LH(k,a,b) is QMA-hard.
“there exist local Hamiltonians for which estimating the ground {ahneysqt:?enﬁ;n; Sir.‘;”;tsﬁé‘;%ﬁ&ires
energy even with constant precision is very hard”
Recent breakthrough (solution of the NLT_S There exist local Hamiltonians for which any state that estimﬁtes the
conjecture by Anshu, Breuckmann and Nirkhe): ground energy with small-enough constant precision is non-trivial.
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