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Motivation: Quantum advantage in Quantum chemistry ?

Ground state energy estimation (GSE, informal): 
Given a Hamiltonian 𝐻, 
compute its ground state energy 𝜆0 𝐻
up to accuracy 𝛿

For a large set of relevant (“generic”) chemistry problems, GSE may be completed exponentially more 
quickly (as a function of system size) on a quantum versus classical computer 

Quantum system 𝐵Quantum system 𝐴

“simulation”

The exponential quantum advantage hypothesis  [LLZ+, Nat. Comm.’23]: 

But does this statement have any rigorous footing?

a killer app for quantum computing ?

Hermitian matrix

Smallest eigenvalue



The local Hamiltonian problem

Local Hamiltonian 𝑘, 𝛿

Input: 𝐻 = σ𝑖=1
𝑚 𝐻𝑖 on 𝑛 qubits with 

𝐻 ≤ 1, where each 𝐻𝑖 acts on at most 
𝑘 qubits, 𝑎, 𝑏 ∈ ℝ s.t. 𝑏 − 𝑎 ≥ 𝛿 > 0.

Promise: 𝜆0 𝐻 ≤ 𝑎 or 𝜆0 𝐻 ≥ 𝑏

Output: 
• YES if 𝜆0 𝐻 ≤ 𝑎
• NO if 𝜆0 𝐻 ≥ 𝑏

Definition 1 
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1. Ground state approximation: 
A classical heuristic algorithm (e.g., Hartree-Fock) is used to obtain the description of a 
good guiding state |𝜓⟩, which is hoped to have ‘good’ fidelity with 𝜓0 .

2. Ground state energy approximation: 
Quantum phase estimation is used on |𝜓⟩ to estimate 𝜆0(𝐻). 

What is proposed in practice?

Quantum advantage in ground state energy approximation?

Quantum system 𝐵Quantum system 𝐴

“simulation”



[GL’22]: BQP-completeness results for GLH in 
the precision setting 𝛿 = Θ(1/𝑝𝑜𝑙𝑦(𝑛)) when

• 𝐻 has locality 𝑘 ≥ 6

•  The fidelity is 𝜁 ∈
1

𝑝𝑜𝑙𝑦 𝑛
,

1

2
−

1

𝑝𝑜𝑙𝑦 𝑛

[GL’22]: The problem is in BPP when the 
desired precision is 𝛿 =  Ω 1  (under sampling 
assumptions)

The guided local Hamiltonian problem (GLH)

Guided local Hamiltonian 𝑘, 𝛿, 𝜁

Input: 𝐻 = σ𝑖=1
𝑚 𝐻𝑖 on 𝑛 qubits, where 

each 𝐻𝑖 acts on at most 𝑘 qubits, 𝐻 ≤ 1,
parameters 𝑎, 𝑏 ∈ ℝ s.t. 𝑏 − 𝑎 ≥ 𝛿 > 0, 
and a description of semi-classical 
quantum state 

𝑢 ∈ ℂ2𝑛
.

Promises: 𝜆0 𝐻 ≤ 𝑎 or 𝜆0 𝐻 ≥ 𝑏 and 
‖Π0𝑢‖2 ≥ ζ

Output: 
• YES if 𝜆0 𝐻 ≤ 𝑎
• NO if 𝜆0 𝐻 ≥ 𝑏

Definition 2 

* semi-classical: efficient classical description (+ classically samplable)

SUSTech-Nagoya 2022

(Π0: projection into the space spanned by the ground states)



BQP-completeness results for GLH in the precision 
setting 𝛿 = Θ(1/𝑝𝑜𝑙𝑦(𝑛)) when   

• 𝑘 ≥ 2    

• 𝜁 ∈
1

𝑝𝑜𝑙𝑦 𝑛
, 1 −

1

𝑝𝑜𝑙𝑦 𝑛
 

• 𝐻 is physically motivated   

This work

Quantum advantage (assuming BPP≠BQP) for GLH 
for physically motivated Hamiltonians

➢ 𝑋𝑌 Hamiltonian on 2D lattice
➢ Antiferromagnetic 𝑋𝑌 Hamiltonian 
➢ Heisenberg Hamiltonian on 2D lattice
➢ Antiferromagnetic Heisenberg Hamiltonian  

Guided local Hamiltonian 𝑘, 𝛿, 𝜁

Input: 𝐻 = σ𝑖=1
𝑚 𝐻𝑖 on 𝑛 qubits, where 

each 𝐻𝑖 acts on at most 𝑘 qubits, 𝐻 ≤ 1,
parameters 𝑎, 𝑏 ∈ ℝ s.t. 𝑏 − 𝑎 ≥ 𝛿 > 0, 
and a description of semi-classical 
quantum state 

𝑢 ∈ ℂ2𝑛
.

Promises: 𝜆0 𝐻 ≤ 𝑎 or 𝜆0 𝐻 ≥ 𝑏 and 
‖Π0𝑢‖2 ≥ ζ

Output: 
• YES if 𝜆0 𝐻 ≤ 𝑎
• NO if 𝜆0 𝐻 ≥ 𝑏

Definition 2 

* semi-classical: efficient classical description (+ classically samplable)

(Π0: projection into the space spanned by the ground states)



BQP- decision 
circuit

GLH instance 

5-local 𝐻1

Subset state |u1⟩ 

𝟏 − 𝟏/poly(𝒏) overlap・Circuit-to-Hamiltonian 
construction (as in [GL’22])
・Perturbative analysis 
of  the ground state (new)

GLH instance 

2-local, Physically 
motivated 𝐻𝑝ℎ𝑦𝑠

Encoded state |𝑢3⟩ 

1 − 1/poly(𝑛) overlapA series of 
Perturbative
Simulation (new)

⋯

Proof overview

①

②



𝑈𝑥:  Quantum circuit that decides 𝑥

𝑥
|0 … 0⟩

Yes: 𝑝1 ≥ 𝛼 = 1 − 2−𝑛

No: 𝑝1 ≤ 𝛽 = 2−𝑛𝑈𝑥
𝐼

𝐼

𝐼෩𝑈𝑥

Pre-idling

• The unique ground state is

• 1/𝑝𝑜𝑙𝑦(𝑛) gap

• 1 − 1/𝑝𝑜𝑙𝑦(𝑛) overlap between 
 |𝜓ℎ𝑖𝑠𝑡⟩ and the ground state of 𝐻1
(instead of 1/2-1/ 𝑝𝑜𝑙𝑦(𝑛) in the analysis from [GL’22])

• The ground state energies in the YES/NO cases 
have 1/𝑝𝑜𝑙𝑦(𝑛) gap 

Take large enough Δ, and apply long enough idling
Our contribution: better analysis by perturbation 

theory (e.g., Schrieffer-Wolf transformation )

1 − 1/𝑝𝑜𝑙𝑦(𝑛) overlap
 for long idling

1

𝐻1 = Δ 𝐻𝑖𝑛 + 𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑠𝑡𝑎𝑏  + 𝐻𝑜𝑢𝑡

Circuit-to-Hamiltonian construction

Proof sketch ①: Encoding the BQP decision problem into GLH

SAME as [GL’22]



BQP- decision 
circuit

GLH instance 

5-local 𝐻1

Subset state |u1⟩ 

𝟏 − 𝟏/poly(𝒏) overlap・Circuit-to-Hamiltonian 
construction (as in [GL’22])
・Perturbative analysis 
of  the ground state (new)

GLH instance 

2-local, Physically 
motivated 𝐻𝑝ℎ𝑦𝑠

Encoded state |𝑢3⟩ 

1 − 1/poly(𝑛) overlapA series of 
Perturbative
Simulation (new)

⋯

Proof overview

①

②



• Preserve the energy spectrum of the original Hamiltonian
• Preserve the semi-classical property of the original guiding state

This is possible because the target families of Hamiltonians 
are strongly universal [ZA21].

They can simulate any 𝑂(1)-local 𝑛-qubit Hamiltonian 
efficiently up to polynomially large  Δ, 𝜖−1 

𝐻 𝐻′

Δ

𝜖

Only local encodings that preserve the semi-classical property appear!

)((۪𝑖 𝑉𝑖) 𝑢1

Subset state mediator qubitsSubspace encoding 

Apply a chain of Perturbative simulation

𝐻 𝐻𝑠𝑝𝑎𝑟𝑠𝑒,2−𝑙𝑜𝑐𝑎𝑙𝐻𝑠𝑝𝑎𝑟𝑠𝑒 𝐻𝑃ℎ𝑦𝑠
⋯

Proof sketch ② : Reduction to 2-local physically motivated Hamiltonians

⊗ 0 ⊗ 1 ⊗ 1 ⊗ +𝑦 ⊗ ⋯ ⊗ +𝑦



• Previous result [GL, STOC22] has shown the BQP-completeness (classical 
intractability) of the guided local Hamiltonian problem. However, the locality 
and the approximation parameter were not optimal. Also, it was not known if 
the BQP-hardness persists for physically motivated Hamiltonians

• We have shown the BQP-completeness of estimating the ground state energy of 
physically motivated Hamiltonians in the guided setting while improving the 

locality (6→2) and the approximation parameter  
1

2
−

1

𝑝𝑜𝑙𝑦 𝑛
 →  1 −

1

𝑝𝑜𝑙𝑦 𝑛
 . 

Summary



• Average-case classical hardness of guided local Hamiltonian problem?

• The promise gap can be improved to Θ(1/𝑛)?

      (instead of 1/𝑝𝑜𝑙𝑦(𝑛))

Future directions

Related to the quantum PCP conjecture



Quantum PCP Conjecture

input: a k-local Hamiltonian H acting on n qubits such that H  ≤ 1

promise: either λ0(H) ≤ a or λ0(H) ≥ b holds

goal: decide which of λ0(H) ≤ a or λ0(H) ≥ b holds

LH(k,a,b) “Local Hamiltonian problem” (for a < b)

known: 

[Kitaev et al. 

02,06]

There exist a,b ∈ [-1,1] with b-a =1/poly(n) such that 

LH(2,a,b) is QMA-hard.

“there exist local Hamiltonians for which estimating the ground 

energy with inverse-polynomial precision is very hard”

Quantum PCP 

conjecture: 

There exist k=O(1) and a,b ∈ [-1,1] with b-a = Ω(1) 

such that LH(k,a,b) is QMA-hard.

“there exist local Hamiltonians for which estimating the ground 

energy even with constant precision is very hard”

no guiding vector!

Quantum generalization of the class NP

Recent breakthrough (solution of the NLTS 

conjecture by Anshu, Breuckmann and Nirkhe): 
There exist local Hamiltonians for which any state that estimates the 

ground energy with small-enough constant precision is non-trivial.

Can it be 

improved (say, to 

ϴ(1/n))?

Currently: ϴ(1/n3)
(similar in this work)

any quantum circuit that prepares 

the state has at least log depth
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