The second law of information thermodynamics for general measurement processes

Shintaro Minagawa, Kenta Sakai, Kohtaro Kato, and Francesco Buscemi

Graduate School of Informatics, Nagoya University

arXiv: 2308.15558

- 1. Introduction
- Maxwell's demon[1]

Low entropy

High entropy

Fig. 1. Maxwell's demon[1]

Feedback control can decrease entropy \rightarrow How to make feedback control and 2nd law consistent?

[1] J. C. Maxwell, Theory of heat (Appleton, London, 1871)

- Sagawa and Ueda's solution
 - Sagawa and Ueda (2008)[2]: feedback control allows us to extract more work beyond the conventional second law
 - Sagawa and Ueda (2009)[3, 4]: however, the work feedback controller needs for the measurement and resetting its memory (erasure) compensates the excess

[2] T. Sagawa and M. Ueda, Phys. Rev. Lett. 100, 080403 (2008)
[3] T. Sagawa and M. Ueda, Phys. Rev. Lett. 102, 250602 (2009)
[4] T. Sagawa and M. Ueda, Phys. Rev. Lett. 106, 189901 (2011) (the erratum of [3])

Problem: The measurement process considered by Sagawa and Ueda is not general

Feedback control and erasure protocol with all quantum measurement processes

Sagawa and Ueda

Fig. 2. Sagawa and Ueda and our work

Problem: The measurement process considered by Sagawa and Ueda is not general

Feedback control and erasure protocol with all quantum measurement processes

Feedback control and erasure protocol consistent with the 2nd law

Sagawa and Ueda

Fig. 2. Sagawa and Ueda and our work

Problem: The measurement process considered by Sagawa and Ueda is not general

Feedback control and erasure protocol with all quantum measurement processes

Feedback control and erasure protocol consistent with the 2nd law

Sagawa and Ueda

Fig. 2. Sagawa and Ueda and our work

()ur

work

2. Thermodynamics

• The first law of thermodynamics

Fig. 3. Internal energy change due to heat and work

 $\Delta U = Q_{\rm in} + W_{\rm in}$

2. Thermodynamics

- The second law of thermodynamics
 - Kelvin's principle: No cycle can convert all heat received from one heat bath to work
 - Clausius' principle: Heat does not spontaneously move from a low temperature object to a high temperature object
 - Entropy non-decreasing law (an isolated system or an adiabatic process): $\Delta S \ge 0$
 - $W_{\text{ext}} \leq -\Delta F$ (an isothermal process)

2. Thermodynamics

- The second law of thermodynamics
 - Kelvin's principle: No cycle can convert all heat received from one heat bath to work
 - Clausius' principle: Heat does not spontaneously move from a low temperature object to a high temperature object
 - Entropy non-decreasing law (an isolated system or an adiabatic process): $\Delta S \ge 0$
 - $W_{\text{ext}} \leq -\Delta F$ (in an isothermal process)

- 2. Thermodynamics
- Helmholtz free energy: $F \coloneqq U TS$

Isothermal process: $\Delta F = \Delta U - T_e \Delta S$

The 1st law:
$$\Delta U = W_{in} + Q_{in}$$

Clausius' inequality: $T_{\rm e}\Delta S - Q_{\rm in} \ge 0$

Fig. 4. Isothermal process

$$W_{\rm in} \ge \Delta F$$

or
 $W_{\rm ext} \le -\Delta F$
lausius-type inequality)

- Hamiltonian: H^A
- Averaged energy: $E(\rho^A; H^A) \coloneqq \operatorname{Tr}[\rho^A H^A]$
- Inverse temperature: $\beta \coloneqq \frac{1}{kT} > 0$
- Partition function: $Z^A \coloneqq \operatorname{Tr} e^{-\beta H^A}$
- Gibbs (thermal equilibrium) state: $\gamma^A \coloneqq \frac{e^{-\beta H^A}}{z^A}$
- Equilibrium free energy: $F_{eq}^A \coloneqq -\beta^{-1} \ln Z^A$

- Von Neumann entropy[5]: $S(\rho^A)$ or $S(A)_{\rho} := -\text{Tr}[\rho^A \ln \rho^A]$
- Umegaki relative entrpy[6]:

 $D(\rho^{A}||\sigma^{A}) \coloneqq \operatorname{Tr}[\rho^{A}\ln\rho^{A} - \rho^{A}\ln\sigma^{A}] \ (\sigma^{A} \ge 0)$

- Quantum mutual information: $I(A:A')_{\rho} \coloneqq S(A)_{\rho} + S(A')_{\rho} S(AA')_{\rho}$
- Nonequilibrium free energy [7]: $F(\rho^A; H^A) \coloneqq F_{eq}^A + \beta^{-1}D(\rho^A || \gamma^A)$ Important formula[7]: $F(\rho^A; H^A) = E(\rho^A; H^A) - \beta^{-1}S(A)_{\rho}$

[5] J. von Neumann, Mathematical foundations of quantum mechanics (Princeton University Press, 1955).
[6] H. Umegaki, Proc. Japan Acad. 37, 459 (1961).
[7] M. Esposito and C. Van den Broeck, EPL (Europhysics Letters) 95, 40004 (2011).

• Quantum instruments and indirect measurement [8]

 \mathcal{M}_k is a CP linear map and $\sum_k \mathcal{M}_k$ is TP

Fig. 5 Quantum instrument

[8] M. Ozawa, J. Math. Phys. 25, 79 (1984).

- We say that instrument \mathcal{M} is *efficient* if \mathcal{M}_k has only one Kraus operator for each measurement outcome k
- Groenewold--Ozawa information gain [9, 10] is defined as $I_{GO} := S(A)_{pre} - S(A|K)_{post}$
- QC-mutual information[2] is defined as

•
$$I_{QC} \coloneqq S(A)_{\text{pre}} - \sum_{k} p_k S\left(\frac{\sqrt{E_k}\rho\sqrt{E_k}}{p_k}\right) (E_k: \text{POVM})$$

For efficient instruments, $I_{GO} = I_{QC}[11]$

[9] H. J. Groenewold, Int. J. Theor. Phys. 4, 327 (1971). [10] M. Ozawa, J. Math. Phys. 27, 759 (1986). [11] F. Buscemi, M. Hayashi, and M. Horodecki, Phys. Rev. Lett. 100, 210504 (2008).

Fig. 7. controller-assisted information processing followed by a unitary interaction with the thermal bath

The first law during
$$1 \rightarrow 2$$

 $\Delta E_{1 \rightarrow 2}^{C} = W_{in,\mathcal{V}}^{C} + Q$
where $Q \coloneqq -\Delta E_{1 \rightarrow 2}^{B}$ is heat absorbe
by the system

 $\rightarrow W_{in 12}^c = \Delta E_{1 \rightarrow 2}^{cB}$

 $W_{\text{ext}}^A \coloneqq -\Delta E_{0 \to 1}^A = E(\rho_0^A) - E(\tau_1^A)$

S. M., K. Sakai, K. Kato, and F. Buscemi, arXiv: 2308.15558 (2023)

C

$$W_{\text{ext}}^{A} \coloneqq -\Delta E_{0 \to 1}^{A} = E(\rho_{0}^{A}) - E(\tau_{1}^{A})$$
$$W_{\text{in},\mathcal{V}}^{C} = \Delta E_{1 \to 2}^{CB}$$
$$W_{\text{in}}^{C} \coloneqq \Delta E_{0 \to 1}^{C} + \Delta E_{1 \to 2}^{CB}$$
$$W_{\text{ext}}^{AC} \coloneqq W_{\text{ext}}^{A} - W_{\text{in}}^{C}$$

Fig. 7. controller-assisted information processing followed by a unitary interaction with the thermal bath

$$W_{\text{ext}}^{A} \coloneqq -\Delta E_{0 \to 1}^{A} = E(\rho_{0}^{A}) - E(\tau_{1}^{A})$$
$$W_{\text{in},\mathcal{V}}^{C} \equiv \Delta E_{1 \to 2}^{CB}$$
$$W_{\text{in}}^{C} \coloneqq \Delta E_{0 \to 1}^{C} + \Delta E_{1 \to 2}^{CB}$$
$$W_{\text{ext}}^{AC} \coloneqq W_{\text{ext}}^{A} - W_{\text{in}}^{C}$$

Fig. 7. controller-assisted information processing followed by a unitary interaction with the thermal bath

$$\Delta I(A:C)_{1\to 2} \coloneqq I(A:C)_2 - I(A:C)_1 \le 0 \ [12]$$
$$I(C:B)_{\omega_2} \ge 0, D(\omega_2^B || \gamma^B) \ge 0[13]$$

[12] B. Schumacher and M. A. Nielsen, Phys. Rev. A 54, 2629 (1996).[13] O. Klein, Z. Phys. 72, 767 (1931).

$$W_{\text{ext}}^{AC} = -\Delta F_{0\to 2}^{AC} - \beta^{-1} [\Delta S_{0\to 1}^{AC} - \Delta I(A;C)_{1\to 2} + I(C;B)_{\omega_2} + D(\omega_2^B || \gamma^B)]$$

Theorem 1 (Clausius-type inequality)

$$\begin{split} W_{\text{ext}}^{AC} &\leq -\Delta F_{0 \to 2}^{AC} \\ \Leftrightarrow \Delta S_{0 \to 1}^{AC} - \Delta I(A:C)_{1 \to 2} + I(C:B)_{\omega_2} + D(\omega_2^B || \gamma^B) \geq 0 \end{split}$$

5. Feedback control and erasure protocol

S. M., K. Sakai, K. Kato, and F. Buscemi, arXiv: 2308.15558 (2023)

Shenzhen-Nagoya Workshop on Quantum Science

5. Feedback control and erasure protocol

$$W_{\text{ext}}^{A} \coloneqq -\Delta E_{0 \to 1}^{A} = E(\rho_{0}^{A}) - E(\tau_{1}^{A})$$
$$W_{\text{in},\mathcal{V}}^{C} = \Delta E_{1 \to 2}^{CB}$$
$$W_{\text{in}}^{C} \coloneqq \Delta E_{0 \to 1}^{C} + \Delta E_{1 \to 2}^{CB}$$
$$W_{\text{ext}}^{AC} \coloneqq W_{\text{ext}}^{A} - W_{\text{in}}^{C}$$

Fig. 7. controller-assisted information processing followed by a unitary interaction with the thermal bath

Work formula for the work extractable
from the system:
$$W_{\text{ext}}^{A} = -\Delta F_{0 \to 2}^{A} - \beta^{-1} \Delta S_{0 \to 2}^{A}$$
$$\stackrel{\rho_{0}^{A} \longrightarrow \mathcal{D}}{\xrightarrow{\tau_{1}^{AC}}} \stackrel{\tau_{1}^{AC} \longrightarrow \mathcal{D}}{\xrightarrow{\tau_{1}^{AC}}} \stackrel{\sigma_{0}^{C} \longrightarrow \mathcal{D}}{\xrightarrow{\tau_{1}^{AC}}} \stackrel{\sigma$$

 t_4

 t_1

 t_0

 t_2

 t_3

Work formula of the controller:

$$W_{in}^{C} = \Delta F_{0 \to 2}^{C} + \beta^{-1} [\Delta S_{0 \to 1}^{C} + I(C:B)_{\omega_{2}} + D(\omega_{2}^{B} || \gamma^{B})]$$

$$\stackrel{\circ C \to MK}{\stackrel{\circ \Delta S_{0 \to 1}^{C} \to \Delta S_{0 \to 2}^{MK}}{\stackrel{\circ D \to 0}{\stackrel{\circ}{\rightarrow}} + I(C:B)_{\omega_{2}} + D(\omega_{2}^{B} || \gamma^{B})]$$

$$\stackrel{\circ \Delta S_{0 \to 1}^{C} \to \Delta S_{0 \to 2}^{MK}}{\stackrel{\circ \Delta F_{0 \to 2}^{C} \to \Delta F_{0 \to 4}^{MK}}{\stackrel{\circ D \to 0}{\stackrel{\circ}{\rightarrow}} + 0} (\text{because of the erasure})$$

$$\stackrel{\rho_{0}^{A} \to U}{\stackrel{\circ D \to 0}{\stackrel{\circ}{\rightarrow}} + I(C:B)_{\omega_{2}} + I_{GO}]$$

[14] E. H. Lieb and M. B. Ruskai, J. Math. Phys. 14, 1938 (2003)

Our result (valid for general measurement processes

•
$$W_{\text{ext}}^A \leq -\Delta F_{0\to 4}^A + \beta^{-1} I_{\text{GO}}$$

•
$$W_{\text{in}}^{MK} \ge \beta^{-1} [\Delta S_{0 \to 2}^{AMK} + I_{\text{GO}}]$$

Sagawa and Ueda's results[2, 3, 4]

- $W_{\text{ext}}^A \leq -\Delta F_{\text{eq},0\to4}^A + \beta^{-1} I_{\text{QC}}$
- $W_{\text{in}}^{MK} \geq I_{\text{QC}}$

Sagawa and Ueda's assumption[2, 3, 4]

(A1) \mathcal{M} is projection $\rightarrow \Delta S_{0 \rightarrow 2}^{AMK} \ge 0$ [15]

(A2) The target system's measurement process is efficient $\rightarrow I_{GO} = I_{QC}$ [11]

(A3) The target system's initial state is the Gibbs state $\rightarrow -\Delta F_{0\rightarrow 4}^{A} \leq -\Delta F_{eq,0\rightarrow 4}^{A}$

[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010)

[16] K. Abdelkhalek, Y. Nakata, and D. Reeb, arXiv:1609.06981 (2016).

2023/9/7 Shintaro Minagawa

7. Conclusion

- We analyze the work associated with the feedback control with a general quantum measurement process
- Necessary and sufficient conditions for the Clausius-type inequality was obtained $W_{\text{ext}}^{AMK} \leq -\Delta F_{0 \to 4}^{AMK} \Leftrightarrow \Delta S_{0 \to 2}^{AMK} - \Delta I(A:MK)_{3 \to 4} + I(MK:B)_{\rho_4} + D(\rho_4^B || \gamma^B) \geq 0$
- Two bounds of work hold in general measurement processes:
 - $W_{\text{ext}}^A \leq -\Delta F_{0 \to 4}^A + \beta^{-1} I_{\text{GO}}$
 - $W_{\text{in}}^{MK} \ge \beta^{-1} [\Delta S_{0 \rightarrow 2}^{AMK} + I_{\text{GO}}]$
- Entropy non-reducing measurement $\rightarrow W_{ext}^A W_{in}^{MK} \leq -\Delta F_{0 \rightarrow 4}^A$

S. M., K. Sakai, K. Kato, and F. Buscemi, arXiv: 2308.15558 (2023)