More Distributed Quantum Merlin-Arthur Protocols: Improvement and Extension

Harumichi Nishimura (Nagoya U)

Based on arXiv:2002.10018 (with P. Fraigniaud, F. Le Gall, A. Paz) & 2210.01389 (with F. Le Gall, M. Miyamoto)

September 5, 2023

Shenzhen–Nagoya Workshop on Quantum Science 2023

3 interpretations of NP

- Non-deterministic computation
 - NP:=Nondeterministic Polynomial-time
 - related classes : PP, #P
- Logical structure
 - NP= \exists P, coNP= \forall P, …
 - related classes: PH (polynomial-time hierarchy)
- Proof system
 - Communication protocols for verification
 - related classes : MA, AM, IP

NP as Proof Systems

 $A = (A_{yes}, A_{no}) \in NP \Leftrightarrow$ There is a polynomial-time algorithm V:

(completeness) $x \in A_{yes} \to \exists w \ [V(x,w) = accept]$ (soundness) $x \in A_{no} \to \forall w \ [V(x,w) = reject]$

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]

Μ

Prover

(Merlin)

• Locally checkable proof [Goos, Suomela 16]

etc

• Input

- Graph (structure of the network)
- Strings for nodes

• Distributed Merlin-Arthur (dMA) protocols

- Proof labeling scheme [Korman, Kutten, Peleg 10]
- Locally checkable proof [Goos, Suomela 16]

etc

<u>Two phases</u>:

1. (Prover phase) Prover sends certificates to each node

• Distributed Merlin-Arthur (dMA) protocols

- Proof labeling scheme [Korman, Kutten, Peleg 10]
- Locally checkable proof [Goos, Suomela 16]

etc

<u>Two phases</u>:

- 1. (Prover phase) Prover sends certificates to each node
- (Verification phase) Each node exchanges messages with the neighbors

• Distributed Merlin-Arthur (dMA) protocols

- Proof labeling scheme [Korman, Kutten, Peleg 10]
- Locally checkable proof [Goos, Suomela 16]

etc

Properties:

(YES case: Completeness)
∃W[all nodes accept]
(w.h.p.)
(NO case: Soundness)
∀W[some node rejects]
(w.h.p.)

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]
 - Locally checkable proof [Goos, Suomela 16]

etc

Complexity parameters:

- Certificate size
 - Length of a message which the prover sends to <u>each node</u>
- Message size
 - Length of messages sent on <u>each edge</u>

 ${\mathcal X}$

Ex: 3-colorability

- Input
 - Graph G = (V, E)
- Output
 - Is G 3-colorable?
- Protocol
 - Honest prover sends a color to each node such that their colors make 3coloring of G
 - Each node checks whether the color is different from that of the neighbors
 - Certificate size O(1)
 - Message size O(1)

QMA: Quantum NP [Knill, Kitaev, Watrous]

$A \in \mathsf{QMA} \Leftrightarrow$

There is a polynomial-time quantum algorithm *V*:

(completeness) $x \in A_{yes} \to \exists |\varphi\rangle$: $\Pr[V(x, |\varphi\rangle) = \operatorname{accept}] \ge 2/3$ (soundness) $x \in A_{no} \to \forall |\varphi\rangle$: $\Pr[V(x, |\varphi\rangle) = \operatorname{reject}] \ge 2/3$

Distributed Quantum Merlin-Arthur (dQMA)

[FLNP20]

- Distributed Quantum Merlin-Arthur (dQMA) protocols on the network
 - Quantum certificates from the prover
 - Quantum messages among nodes

Q. Which problems are efficient for dQMA protocols?

EQ: Equality of Data

- Replicated data on a network
- Are all data identical?

terminals (nodes who have data)

EQ: Equality of Data

- Replicated data on a network
- Are all data identical?
- No O(1) round protocol
 - Ω(r) rounds are needed
 (r : diameter of the network)
 - We assume the nodes do not share prior randomness (& entanglement)
- ∃ 1 round "NP-like" protocol (distributed certification)

dMA Protocol for EQ

Trivial protocol:

(P) Prover M sends x when all data are x
(V) Each node checks if it is same as the neighbor's one

(YES case: Completeness) *HW*[all nodes accept]

dMA Protocol for EQ

Trivial protocol:

(P) Prover M sends x when all data are x
(V) Each node checks if it is same as the neighbor's one

(NO case: Soundness) ∀W[some node rejects]

dMA Protocol for EQ

<u>Trivial Protocol is</u> <u>communication inefficient</u>

- Prover M sends n bits for each node ($n \coloneqq$ length of x)
- Each node sends *n* bits to the neighbors

Results for EQ [FLNP20]

- Distributed Quantum Merlin-Arthur (dQMA) protocols on the network
 - Quantum certificates from the prover
 - Quantum messages among nodes
- Classical lower bound for EQ
 - Any dMA protocol requires Ω(n)-bit certificates if error probability is reasonably small (say, 1/4)

Results for EQ [FLNP20]

- Distributed Quantum Merlin-Arthur (dQMA) protocols on the network
 - Quantum certificates from the prover
 - Quantum messages among nodes
- Classical lower bound for EQ
 - Any dMA protocol requires Ω(n)-bit certificates if error probability is reasonably small (say, 1/4)
- Quantum upper bound for EQ
 - \exists dQMA protocol for equality of replicated data with $O(tr^2 \log(n + r))$ -qubit certificates & messages
 - *t*:= number of the terminals (= nodes who have data)
 - $r \coloneqq$ diameter of the network
 - t and r are typically much smaller than n

KLNP20 Protocol for a line (Prover phase)

- Honest prover (when x = y) sends certificate $|h_x\rangle$ (quantum fingerprint of x [BCWW01]) to each of the intermediate nodes
 - $|h_x\rangle$ is almost orthogonal to $|h_y\rangle$ if $x \neq y$
 - Length of $|h_x\rangle$ is $O(\log n)$
- The left node creates $|h_x\rangle$ and the right node creates $|h_y\rangle$

KLNP20 Protocol for a line (Verification phase)

- 1. Each node v_j (except right node) chooses $b_j \in \{0,1\}$ uniformly at random: if $b_j = 0$, v_j sends the state to the right neighbor; otherwise, keep it by itself.
- 2. Each node (except left node) does SWAP test if it has two states, and outputs its result (accept/reject), and accepts otherwise

General Graphs for EQ

- Merlin sends a rooted tree with quantum certificates:
 - Root is a terminal
 - Leaves are the other terminals
- Run the protocols on lines from the root to terminals in parallel

More Problems on a line graph

- EQ
- SetEQ
- State generation

SetEQ (2-parties $P_1 \& P_2$)

- Input
 - Each party P_j has two lists of l elements in a finite set U
 - $a_j = (a_{j,1}, a_{j,2}, \dots, a_{j,l})$
 - $b_j = (b_{j,1}, b_{j,2}, \dots, b_{j,l})$
- Output
 - 1 (yes) iff $A \coloneqq \{a_{j,i} | j \in \{1,2\}, i \in [l]\}$ and $B \coloneqq \{b_{j,i} | j \in \{1,2\}, i \in [l]\}$ are the same as multisets

SetEQ (2-parties $P_1 \& P_2$)

- Input
 - Each party P_i has two lists of l elements in a finite set U
 - $a_j = (a_{j,1}, a_{j,2}, \dots, a_{j,l})$
 - $b_j = (b_{j,1}, b_{j,2}, \dots, b_{j,l})$
- Output
 - 1 (yes) iff $A \coloneqq \{a_{j,i} | j \in \{1,2\}, i \in [l]\}$ and $B \coloneqq \{b_{j,i} | j \in \{1,2\}, i \in [l]\}$ are the same as multisets

Example

SetEQ (distributed comp. version) [NPY20]

SetEQ_{l, U}

- Input
 - <u>Graph</u> G = (V, E)
 - Each node u has two lists of l elements in a finite set U
 - $a_u = (a_{u,1}, a_{u,2}, \dots, a_{u,l})$
 - $b_u = (b_{u,1}, b_{u,2}, \dots, b_{u,l})$
- Output
 - 1 (yes) iff $A \coloneqq \{a_{u,i} | u \in V, i \in [l]\}$ and $B \coloneqq \{b_{u,i} | u \in V, i \in [l]\}$ are the same as multisets

Result on SetEQ

[LMN22-1, Thm2] For any small enough $\varepsilon > 0$, there is a dQMA protocol for SetEQ_{*l*, *u*} on the line of length *r* with completeness $1 - \varepsilon$ and soundness ε that has

- certificate size $O(r^5 \log^2(lr) \log^2|U|)$
- message size $O(r^2 \log(lr) \log |U|)$

Result on SetEQ

[LMN22-1, Thm2] For any small enough $\varepsilon > 0$, there is a dQMA protocol for SetEQ_{*l*, *y*} on the line of length *r* with completeness $1 - \varepsilon$ and soundness ε that has

- certificate size $O(r^5 \log^2(lr) \log^2|U|)$
- message size $O(r^2 \log(lr) \log |U|)$

Cf. dMA protocol

[LMN22-1, Thm3] For any dQMA protocol for SetEQ_{*l*, *v*} on a line graph of length r with certificate size s_c , completeness $\frac{3}{4}$ and soundness $\frac{1}{4}$,

If
$$|U| < l$$
, then $s_c = \Omega(|U| \log(l/|U|))$;

If
$$|U| = \Omega(l)$$
, then $s_c = \Omega(l)$;

If
$$|U| = \Omega(rl)$$
, then $s_c = \Omega(rl)$

More Problems on a line graph

- EQ
- SetEQ
- State generation (SGDI)

Classical problems ⇒Quantum problems

- State & Unitary synthesis [Aaronson 16]
 - State \rightleftharpoons Quantum version of bit strings
 - Unitary ≒ Quantum version of Boolean circuits
- Interactive proof for State & Unitary synthesis [RY21]
- Complexity of generating a QMA certificate (search-todecision reduction of QMA) [INNRY22]
- Pseudorandom states [JLS18,Kre21]

SGDI: State generation on distributed inputs

- Line $v_0 v_1 \dots v_r$
- v_0 has a classical description of an n-qubit state $|\psi
 angle$
- v_j (j = 1, 2, ..., r) has a unitary transform U_j
- Goal: Generate $|\varphi_r\rangle\coloneqq U_r\cdots U_1|\psi\rangle$ at v_r

SGDI: State generation on distributed inputs

- Line $v_0 v_1 \dots v_r$
- v_0 has a classical description of an n-qubit state $|\psi
 angle$
- v_j (j = 1, 2, ..., r) has a unitary transform U_j
- Goal: Generate $|\varphi_r\rangle\coloneqq U_r\cdots U_1|\psi\rangle$ at v_r
- Impossible by 1-round

Verifying SGDI

- Line $v_0 v_1 \dots v_r$
- v_0 has a classical description of an n-qubit state $|\psi
 angle$
- v_j (j = 1, 2, ..., r) has a unitary transform U_j
- Goal: Verify $|\varphi_r\rangle\coloneqq U_r\cdots U_1|\psi\rangle$ at v_r with the help of the prover

Properties of Distributed Certification

(YES case: Completeness)
∃W[all nodes accept]
(w.h.p.)
(NO case: Soundness)
∀W[some node rejects]
(w.h.p.)

Verifying SGDI

- Line $v_0 v_1 \dots v_r$
- v_0 has a classical description of an n-qubit state $|\psi
 angle$
- v_j (j = 1, 2, ..., r) has a unitary transform U_j
- Goal: Verify $|\varphi_r\rangle\coloneqq U_r\cdots U_1|\psi\rangle$ at v_r with the help of the prover

(Completeness) $\exists |W\rangle$ [all nodes accept & v_r outputs $|\varphi_r\rangle$] (Soundness) If all nodes accept with probability $\geq \varepsilon$, the output of v_r satisfies $F^2(\rho, |\varphi_r\rangle) \geq 1 - \varepsilon$

Result on SGDI

- Line $v_0 v_1 \dots v_r$
- v_0 has a classical description of an n-qubit state $|\psi
 angle$
- v_j (j = 1, 2, ..., r) has a unitary transform U_j
- Goal: Verify $|\varphi_r\rangle \coloneqq U_r \cdots U_1 |\psi\rangle$ at v_r with the prover

```
(Completeness)
```

```
\exists |W\rangle [all nodes accept & v_r \text{ outputs } |\varphi_r\rangle] \\ (Soundness) \\ \text{If all nodes accept with } \\ \text{probability} \geq \varepsilon, \text{ the output of } v_r \\ \text{satisfies} \\ \end{bmatrix}
```

```
F^2(\rho, |\varphi_r\rangle) \ge 1 - \varepsilon
```

[LMN22-1:Thm1]

For any constant $\varepsilon > 0$, there is a dQMA protocol for SGDI with

- certificate size $O(n^2 r^5)$
- Message size $O(nr^2)$

- dQMA protocols have two phases:
 - Prover phase
 - Verification phase

Q. Can we replace the quantum communication of the verification phase into classical communication?

 Verification by local operation and classical communication (LOCC dQMA protocol)

[LMN22-1, Thm5] For any constant p_c and p_s such that $0 \le p_s < p_c \le 1$, let *P* be a dQMA protocol for some problem on a network *G* with completeness p_c and soundness p_s , certificate size s_c^P and message size s_m^P . For any small enough constant $\gamma > 0$, there is an LOCC dQMA protocol *P'* for the same problem on *G* with completeness p_c , soundness $p_s + \gamma$, certificate size $s_c^P + O(d_{max}s_m^Ps_{tm}^P)$, where d_{max} is the maximum degree of *G*, and s_{tm}^P is the total number of qubits sent in the verification stage of *P*.

[LMN22-1, Thm5] For any constant p_c and p_s such that $0 \le p_s < p_c \le 1$, let *P* be a dQMA protocol for some problem on a network *G* with completeness p_c and soundness p_s , certificate size s_c^P and message size s_m^P . For any small enough constant $\gamma > 0$, there is an LOCC dQMA protocol *P'* for the same problem on *G* with completeness p_c , soundness $p_s + \gamma$, certificate size $s_c^P + O(d_{max}s_m^Ps_{tm}^P)$, where d_{max} is the maximum degree of *G*, and s_{tm}^P is the total number of qubits sent in the verification stage of *P*.

[LMN22-1, Cor1] For any small enough constant $\varepsilon > 0$, there is an LOCC dQMA protocol for EQ_n^t with completeness 1, soundness ε , certificate size $O(d_{max}|V|t^2r^4\log^2(n+r))$ and message size $O(|V|t^2r^4\log^2(n+r))$, where r is the radius of the set of the t terminals and |V| is the number of nodes of the network G = (V, E).

Cf. \exists dQMA protocol for EQ_n^t with $O(tr^2 \log(n + r))$ -qubit certificates & messages

• Still exponentially better in the length of data *n*

[LMN22-1, Thm5] For any constant p_c and p_s such that $0 \le p_s < p_c \le 1$, let *P* be a dQMA protocol for some problem on a network *G* with completeness p_c and soundness p_s , certificate size s_c^P and message size s_m^P . For any small enough constant $\gamma > 0$, there is an LOCC dQMA protocol *P'* for the same problem on *G* with completeness p_c , soundness $p_s + \gamma$, certificate size $s_c^P + O(d_{max}s_m^Ps_{tm}^P)$, where d_{max} is the maximum degree of *G*, and s_{tm}^P is the total number of qubits sent in the verification stage of *P*.

Proof idea:

- Replace quantum communication in the verification phase into classical communication by sharing EPR pairs sent from the prover with the original witness
- Use Zhu-Hayashi result [ZH19] for verification of a EPR pair in adversarial scenario.

Summary

- Quantum protocols for distributed certification
 - EQ
 - SetEQ
 - SGDI (State generation for distributed inputs)
- Conversion of dQMA protocols to LOCC dQMA ones
- Future work
 - Extend SetEQ and SGDI to general graphs
 - Quantum advantage on graph size
 - Non-trivial lower bound of quantum proof lengths for any problem

[FLNP20] Fraigniaud, Le Gall, N, Paz, arXiv: 2002.10018 [LMN22-1] Le Gall, Miyamoto, N, arXiv: 2210.01389 [LMN22-2] Le Gall, Miyamoto, N, arXiv: 2210.01390