
More Distributed Quantum
Merlin-Arthur Protocols:

Improvement and Extension

Harumichi Nishimura (Nagoya U)

Based on arXiv:2002.10018 (with P. Fraigniaud, F. Le Gall, A. Paz)
& 2210.01389 (with F. Le Gall, M. Miyamoto)

September 5, 2023

Shenzhen–Nagoya Workshop on Quantum Science 2023

Today’s talk

Distributed computing
Quantum computing

Computational complexity

Today’s talk

Distributed computing
Quantum computing

Computational complexity

Distributed verification

3 interpretations of NP

• Non-deterministic computation
• NP:=Nondeterministic Polynomial-time

• related classes：PP, #P

• Logical structure
• NP=∃P, coNP=∀P, …

• related classes: PH (polynomial-time hierarchy)

• Proof system
• Communication protocols for verification

• related classes：MA, AM, IP

NP as Proof Systems

Prover(Merlin)
Unlimited power

Verifier(Arthur)
Polynomial-time
computation

𝑤
𝑦𝑒𝑠/𝑛𝑜 ?

𝐴 = (𝐴𝑦𝑒𝑠 , 𝐴𝑛𝑜) ∈ NP ⇔

There is a polynomial-time algorithm 𝑉:

(completeness) 𝑥 ∈ 𝐴𝑦𝑒𝑠 → ∃𝑤 [𝑉 𝑥,𝑤 = accept]

(soundness) 𝑥 ∈ 𝐴𝑛𝑜 → ∀𝑤 [𝑉 𝑥,𝑤 = reject]

certificate/proof

Distributed certification

𝑥

𝑧

𝑦

M

Prover
(Merlin)

𝑊

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

• Input
• Graph (structure of the network)

• Strings for nodes

Verifier (Arthur)

Distributed Certification

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

𝑥

𝑧

𝑦

M

Prover
(Merlin)

𝑤 𝑤′
Two phases:
1. (Prover phase) Prover

sends certificates to
each node

Distributed Certification

𝑥

𝑧

𝑦

M

Prover
(Merlin)

𝑤 𝑤′
Two phases:
1. (Prover phase) Prover

sends certificates to each
node

2. (Verification phase) Each
node exchanges messages
with the neighbors

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

Distributed Certification

𝑥

𝑧

𝑦

M

Prover
(Merlin)

𝑊Properties:
(YES case: Completeness)
∃𝑊[all nodes accept]
(w.h.p.)
(NO case: Soundness)
∀𝑊[some node rejects]
(w.h.p.)

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

Distributed Certification

𝑥

𝑧

𝑦

M

Prover
(Merlin)

𝑊Complexity parameters:
• Certificate size

• Length of a message
which the prover
sends to each node

• Message size
• Length of messages

sent on each edge

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

Ex: 3-colorability

M

Prover
(Merlin)

• Input
• Graph 𝐺 = (𝑉, 𝐸)

• Output
• Is 𝐺 3-colorable?

• Protocol
• Honest prover sends a

color to each node such
that their colors make 3-
coloring of 𝐺

• Each node checks whether
the color is different from
that of the neighbors

• Certificate size O(1)
• Message size O(1)

1

1

2

3

2

1

Today’s talk

Distributed computing
Quantum computing

Computational complexity
Quantum distributed
certification

QMA: Quantum NP

Prover (Merlin)
Unlimited power
＝Any quantum
operations

Verifier (Arthur)
Polynomial-time
Quantum algorithm

| ۧ𝜑

𝑦𝑒𝑠/𝑛𝑜 ?

𝐴 ∈ QMA ⇔

There is a polynomial-time quantum algorithm 𝑉:

(completeness) 𝑥 ∈ 𝐴𝑦𝑒𝑠 → ∃ 𝜑 : Pr 𝑉 𝑥, 𝜑 = accept] ≥ 2/3

(soundness) 𝑥 ∈ 𝐴𝑛𝑜 → ∀|𝜑〉: Pr 𝑉 𝑥, 𝜑 = reject] ≥ 2/3

Quantum proof

[Knill, Kitaev, Watrous]

Distributed Quantum Merlin-Arthur (dQMA)

• Distributed Quantum Merlin-Arthur (dQMA)
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

Q. Which problems are efficient for dQMA protocols?

𝑥

𝑧

𝑦

M

|𝑊ۧ

|𝜓ۧ

[FLNP20]

Prover
(Merlin)

EQ: Equality of Data

• Replicated data on a network

• Are all data identical?

𝑥

𝑧

𝑦

terminals (nodes who have data)

EQ: Equality of Data

• Replicated data on a network

• Are all data identical?

• No O(1) round protocol
• Ω(𝑟) rounds are needed

(𝑟：diameter of the network)

• We assume the nodes do not
share prior randomness (&
entanglement)

• ∃ 1 round “NP-like” protocol
(distributed certification)

𝑥

𝑧

𝑦

terminals (nodes who have data)

dMA Protocol for EQ

𝑥

𝑥

𝑥

M

Prover
(Merlin)

Trivial protocol:
(P) Prover M sends 𝑥 when all
data are 𝑥
(V) Each node checks if it is
same as the neighbor’s one

(YES case: Completeness)
∃𝑊[all nodes accept]

𝑥
𝑥

𝑥
𝑥

𝑥

𝑥

𝑥

dMA Protocol for EQ

𝑥

𝑥

𝑥′

M

Prover
(Merlin)

Trivial protocol:
(P) Prover M sends 𝑥 when all
data are 𝑥
(V) Each node checks if it is
same as the neighbor’s one

(NO case: Soundness)
∀𝑊[some node rejects]

𝑥
𝑥

𝑥
𝑥

𝑥

𝑥

𝑥

dMA Protocol for EQ

𝑥

𝑥

𝑥′

M

Prover
(Merlin)

Trivial Protocol is
communication inefficient
• Prover M sends 𝑛 bits for each

node (𝑛 ≔ length of 𝑥)
• Each node sends 𝑛 bits to the

neighbors

𝑥
𝑥

𝑥
𝑥

𝑥

𝑥

𝑥

Results for EQ

• Distributed Quantum Merlin-Arthur (dQMA)
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

• Classical lower bound for EQ
• Any dMA protocol requires Ω(𝑛)-bit certificates if error

probability is reasonably small (say, 1/4)

M

[FLNP20]

𝑥 𝑦

Results for EQ

• Distributed Quantum Merlin-Arthur (dQMA)
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

• Classical lower bound for EQ
• Any dMA protocol requires Ω(𝑛)-bit certificates if error

probability is reasonably small (say, 1/4)

• Quantum upper bound for EQ
• ∃ dQMA protocol for equality of replicated data with
𝑂(𝑡𝑟2 log(𝑛 + 𝑟))-qubit certificates & messages

• 𝑡:= number of the terminals (= nodes who have data)

• 𝑟 ≔ diameter of the network

• 𝒕 and 𝒓 are typically much smaller than 𝒏

𝑥

𝑧

𝑦

M

|𝑊ۧ

|𝜓ۧ

[FLNP20]

KLNP20 Protocol for a line (Prover phase)

• Honest prover (when 𝑥 = 𝑦) sends certificate |ℎ𝑥ۧ (quantum
fingerprint of 𝑥 [BCWW01]) to each of the intermediate nodes
• |ℎ𝑥ۧ is almost orthogonal to |ℎ𝑦ۧ if 𝑥 ≠ 𝑦

• Length of |ℎ𝑥ۧ is 𝑂(log 𝑛)

• The left node creates |ℎ𝑥ۧ and the right node creates |ℎ𝑦ۧ

M

𝑥 𝑦
|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ

|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ
|ℎ𝑦ۧ

KLNP20 Protocol for a line (Verification phase)

1. Each node 𝑣𝑗 (except right node) chooses 𝑏𝑗 ∈ {0,1}
uniformly at random: if 𝑏𝑗 = 0, 𝑣𝑗 sends the state to the
right neighbor; otherwise, keep it by itself.

2. Each node (except left node) does SWAP test if it has two
states, and outputs its result (accept/reject), and accepts
otherwise

𝑥 𝑦
|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ

|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ
|ℎ𝑦ۧ

𝑏2 = 0 𝑏3 = 1

M

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

General Graphs for EQ

• Merlin sends a rooted tree with
quantum certificates:
• Root is a terminal

• Leaves are the other terminals

• Run the protocols on lines from the
root to terminals in parallel

𝑥

𝑧

𝑦

M

Prover
(Merlin)

𝑎

𝑏

𝑐

|ℎ𝑎ۧ

|ℎ𝑎ۧ
|ℎ𝑎ۧ

|ℎ𝑎ۧ

|ℎ𝑎ۧ

|ℎ𝑎ۧ

|ℎ𝑎ۧ

𝑑

More Problems on a line graph

• EQ

• SetEQ

• State generation

SetEQ (2-parties 𝑃1 & 𝑃2)

• Input
• Each party 𝑃𝑗 has two lists of 𝑙 elements in a finite set 𝑈

• 𝑎𝑗 = (𝑎𝑗,1, 𝑎𝑗,2, … , 𝑎𝑗,𝑙)

• 𝑏𝑗 = (𝑏𝑗,1, 𝑏𝑗,2, … , 𝑏𝑗,𝑙)

• Output
• 1 (yes) iff 𝐴 ≔ {𝑎𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} and 𝐵 ≔ {𝑏𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} are

the same as multisets

SetEQ (2-parties 𝑃1 & 𝑃2)

• Input

• Each party 𝑃𝑗 has two lists of 𝑙 elements in a finite set 𝑈

• 𝑎𝑗 = (𝑎𝑗,1, 𝑎𝑗,2, … , 𝑎𝑗,𝑙)

• 𝑏𝑗 = (𝑏𝑗,1, 𝑏𝑗,2, … , 𝑏𝑗,𝑙)

• Output

• 1 (yes) iff 𝐴 ≔ {𝑎𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} and 𝐵 ≔ {𝑏𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} are the same as
multisets

Example

𝑃1 𝑃2

𝑎1 = 1,2,2,4,5
𝑏1 = (4,1,3,1,1)

𝑎2 = 5,3,1,1,4
𝑏2 = (4,2,2,5,5)

SetEQ (distributed comp. version)

SetEQ𝑙, 𝑈

• Input
• Graph 𝐺 = (𝑉, 𝐸)

• Each node 𝑢 has two lists of 𝑙 elements in a finite set 𝑈
• 𝑎𝑢 = (𝑎𝑢,1, 𝑎𝑢,2, … , 𝑎𝑢,𝑙)

• 𝑏𝑢 = (𝑏𝑢,1, 𝑏𝑢,2, … , 𝑏𝑢,𝑙)

• Output
• 1 (yes) iff 𝐴 ≔ {𝑎𝑢,𝑖|𝑢 ∈ 𝑉, 𝑖 ∈ [𝑙]} and 𝐵 ≔ {𝑏𝑢,𝑖|𝑢 ∈ 𝑉, 𝑖 ∈ [𝑙]} are the

same as multisets

[NPY20]

Result on SetEQ

[LMN22-1, Thm2] For any small enough 𝜀 > 0, there is a dQMA protocol
for SetEQ𝑙, 𝑈 on the line of length 𝑟 with completeness 1 − 𝜀 and
soundness 𝜀 that has

• certificate size 𝑂(𝑟5 log2 𝑙𝑟 log2 𝑈)

• message size 𝑂(𝑟2 log 𝑙𝑟 log |𝑈|)

Result on SetEQ

[LMN22-1, Thm2] For any small enough 𝜀 > 0, there is a dQMA protocol for
SetEQ𝑙, 𝑈 on the line of length 𝑟 with completeness 1 − 𝜀 and soundness 𝜀 that
has

• certificate size 𝑂(𝑟5 log2 𝑙𝑟 log2 𝑈)

• message size 𝑂(𝑟2 log 𝑙𝑟 log |𝑈|)

Cf. dMA protocol

[LMN22-1, Thm3] For any dQMA protocol for SetEQ𝑙, 𝑈 on a line graph of length
𝑟 with certificate size 𝑠𝑐, completeness

3

4
and soundness

1

4
,

If 𝑈 < 𝑙, then 𝑠𝑐 = Ω(𝑈 log(𝑙/|𝑈|));

If 𝑈 = Ω(𝑙), then 𝑠𝑐 = Ω 𝑙 ;

If 𝑈 = Ω 𝑟𝑙 , then 𝑠𝑐 = Ω(𝑟𝑙)

More Problems on a line graph

• EQ

• SetEQ

• State generation (SGDI)

Classical problems⇒Quantum problems

• State & Unitary synthesis [Aaronson 16]
• State≒Quantum version of bit strings

• Unitary≒Quantum version of Boolean circuits

• Interactive proof for State & Unitary synthesis [RY21]

• Complexity of generating a QMA certificate (search-to-
decision reduction of QMA) [INNRY22]

• Pseudorandom states [JLS18,Kre21]

SGDI: State generation on distributed inputs

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟
• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Generate 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟

SGDI: State generation on distributed inputs

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟
• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Generate 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟
• Impossible by 1-round

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟

Verifying SGDI

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟

• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Verify 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟 with the help of the prover

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟

M Prover
(Merlin)

Properties of Distributed Certification

𝑥

𝑧

𝑦

M

Prover
(Merlin)

𝑊

(YES case: Completeness)
∃𝑊[all nodes accept]
(w.h.p.)
(NO case: Soundness)
∀𝑊[some node rejects]
(w.h.p.)

Verifying SGDI

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟

• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Verify 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟 with the help of
the prover

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟

M

(Completeness)
∃|𝑊ۧ[all nodes accept
& 𝑣𝑟 outputs |𝜑𝑟ۧ]
(Soundness)
If all nodes accept with
probability ≥ 𝜀, the output
of 𝑣𝑟 satisfies

𝐹2(𝜌, |𝜑𝑟ۧ) ≥ 1 − 𝜀

Prover
(Merlin)

Result on SGDI

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟

• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Verify 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟 with the prover

(Completeness)
∃|𝑊ۧ[all nodes accept
& 𝑣𝑟 outputs |𝜑𝑟ۧ]
(Soundness)
If all nodes accept with
probability ≥ 𝜀, the output of 𝑣𝑟
satisfies

𝐹2(𝜌, |𝜑𝑟ۧ) ≥ 1 − 𝜀

[LMN22-1:Thm1]
For any constant 𝜀 > 0, there is a dQMA protocol for SGDI with
• certificate size 𝑂(𝑛2𝑟5)
• Message size 𝑂(𝑛𝑟2)

Proof idea of Thm1

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ
𝑈2𝑈1|𝜓ۧ

𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ

FLNP-like test

Proof idea of Thm1

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

1

2

𝑘 + 1

𝑚 + 𝑘 + 1

Permute (𝑚 + 𝑘 + 1) registers

Proof idea of Thm1

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

1

2

𝑘 + 1

𝑚 + 𝑘 + 1

Permute (𝑚 + 𝑘 + 1) registers

FLNP-like test

Proof idea of Thm1

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

1

2

𝑘 + 1

𝑚 + 𝑘 + 1

Permute (𝑚 + 𝑘 + 1) registers

FLNP-like test

output

Another Improvement

• dQMA protocols have two phases:
• Prover phase

• Verification phase

Q. Can we replace the quantum
communication of the verification
phase into classical communication?

• Verification by local operation and
classical communication (LOCC dQMA
protocol)

𝑥

𝑧

𝑦

M

|𝑊ۧ

|𝜓ۧProver
(Merlin)

𝑥

𝑧

𝑦

M

|𝑊′ۧ

𝑚
Prover
(Merlin)

Another Improvement

[LMN22-1, Thm5] For any constant 𝑝𝑐 and 𝑝𝑠 such that 0 ≤ 𝑝𝑠 < 𝑝𝑐 ≤ 1,
let 𝑃 be a dQMA protocol for some problem on a network 𝐺 with
completeness 𝑝𝑐 and soundness 𝑝𝑠, certificate size 𝑠𝑐

𝑃 and message size
𝑠𝑚
𝑃 . For any small enough constant 𝛾 > 0, there is an LOCC dQMA

protocol 𝑃′ for the same problem on 𝐺 with completeness 𝑝𝑐, soundness
𝑝𝑠 + 𝛾, certificate size 𝑠𝑐

𝑃 + 𝑂(𝑑𝑚𝑎𝑥𝑠𝑚
𝑃 𝑠𝑡𝑚

𝑃), where 𝑑𝑚𝑎𝑥 is the maximum
degree of 𝐺, and 𝑠𝑡𝑚

𝑃 is the total number of qubits sent in the verification
stage of 𝑃.

Another Improvement

[LMN22-1, Thm5] For any constant 𝑝𝑐 and 𝑝𝑠 such that 0 ≤ 𝑝𝑠 < 𝑝𝑐 ≤ 1, let 𝑃 be a
dQMA protocol for some problem on a network 𝐺 with completeness 𝑝𝑐 and soundness
𝑝𝑠, certificate size 𝑠𝑐

𝑃 and message size 𝑠𝑚
𝑃 . For any small enough constant 𝛾 > 0, there

is an LOCC dQMA protocol 𝑃′ for the same problem on 𝐺 with completeness 𝑝𝑐,
soundness 𝑝𝑠 + 𝛾, certificate size 𝑠𝑐

𝑃 + 𝑂(𝑑𝑚𝑎𝑥𝑠𝑚
𝑃 𝑠𝑡𝑚

𝑃), where 𝑑𝑚𝑎𝑥 is the maximum
degree of 𝐺, and 𝑠𝑡𝑚

𝑃 is the total number of qubits sent in the verification stage of 𝑃.

[LMN22-1, Cor1] For any small enough constant 𝜀 > 0, there is an LOCC dQMA protocol
for 𝐸𝑄𝑛

𝑡 with completeness 1, soundness 𝜀, certificate size 𝑂(𝑑𝑚𝑎𝑥 𝑉 𝑡2𝑟4 log2(𝑛 + 𝑟))
and message size 𝑂(𝑉 𝑡2𝑟4 log2(𝑛 + 𝑟)), where 𝑟 is the radius of the set of the 𝑡
terminals and |𝑉| is the number of nodes of the network 𝐺 = (𝑉, 𝐸).

Cf. ∃ dQMA protocol for 𝐸𝑄𝑛
𝑡 with 𝑂(𝑡𝑟2 log(𝑛 + 𝑟))-qubit certificates & messages

• Still exponentially better in the length of data 𝑛

Another Improvement

[LMN22-1, Thm5] For any constant 𝑝𝑐 and 𝑝𝑠 such that 0 ≤ 𝑝𝑠 < 𝑝𝑐 ≤ 1,
let 𝑃 be a dQMA protocol for some problem on a network 𝐺 with
completeness 𝑝𝑐 and soundness 𝑝𝑠, certificate size 𝑠𝑐

𝑃 and message size
𝑠𝑚
𝑃 . For any small enough constant 𝛾 > 0, there is an LOCC dQMA

protocol 𝑃′ for the same problem on 𝐺 with completeness 𝑝𝑐, soundness
𝑝𝑠 + 𝛾, certificate size 𝑠𝑐

𝑃 + 𝑂(𝑑𝑚𝑎𝑥𝑠𝑚
𝑃 𝑠𝑡𝑚

𝑃), where 𝑑𝑚𝑎𝑥 is the maximum
degree of 𝐺, and 𝑠𝑡𝑚

𝑃 is the total number of qubits sent in the verification
stage of 𝑃.

Proof idea:

• Replace quantum communication in the verification phase into classical
communication by sharing EPR pairs sent from the prover with the
original witness

• Use Zhu-Hayashi result [ZH19] for verification of a EPR pair in
adversarial scenario.

Summary

• Quantum protocols for distributed certification
• EQ

• SetEQ

• SGDI（State generation for distributed inputs）

• Conversion of dQMA protocols to LOCC dQMA ones

• Future work
• Extend SetEQ and SGDI to general graphs

• Quantum advantage on graph size

• Non-trivial lower bound of quantum proof lengths for any problem

[FLNP20] Fraigniaud, Le Gall, N, Paz, arXiv: 2002.10018
[LMN22-1] Le Gall, Miyamoto, N, arXiv: 2210.01389
[LMN22-2] Le Gall, Miyamoto, N, arXiv: 2210.01390

