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3 interpretations of NP

• Non-deterministic computation
• NP:=Nondeterministic Polynomial-time

• related classes：PP, #P

• Logical structure
• NP=∃P, coNP=∀P, …

• related classes: PH (polynomial-time hierarchy)

• Proof system
• Communication protocols for verification

• related classes：MA, AM, IP



NP as Proof Systems

Prover(Merlin) 
Unlimited power

Verifier(Arthur) 
Polynomial-time 
computation

𝑤
𝑦𝑒𝑠/𝑛𝑜 ?

𝐴 = (𝐴𝑦𝑒𝑠 , 𝐴𝑛𝑜) ∈ NP ⇔

There is a polynomial-time algorithm 𝑉: 

(completeness) 𝑥 ∈ 𝐴𝑦𝑒𝑠 → ∃𝑤 [𝑉 𝑥,𝑤 = accept]

(soundness) 𝑥 ∈ 𝐴𝑛𝑜 → ∀𝑤 [𝑉 𝑥,𝑤 = reject]

certificate/proof



Distributed certification

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑊

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

• Input
• Graph (structure of the network)

• Strings for nodes

Verifier (Arthur)



Distributed Certification

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑤 𝑤′
Two phases:
1. (Prover phase) Prover 

sends certificates to 
each node



Distributed Certification

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑤 𝑤′
Two phases:
1. (Prover phase) Prover 

sends certificates to each 
node

2. (Verification phase) Each 
node exchanges messages 
with the neighbors

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc



Distributed Certification

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑊Properties:
(YES case: Completeness) 
∃𝑊[all nodes accept] 
(w.h.p.)
(NO case: Soundness)
∀𝑊[some node rejects]
(w.h.p.)

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc



Distributed Certification

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑊Complexity parameters:
• Certificate size

• Length of a message 
which the prover
sends to each node

• Message size
• Length of messages

sent on each edge

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc



Ex: 3-colorability

M

Prover 
(Merlin)

• Input
• Graph 𝐺 = (𝑉, 𝐸)

• Output
• Is 𝐺 3-colorable?

• Protocol
• Honest prover sends a 

color to each node such 
that their colors make 3-
coloring of 𝐺

• Each node checks whether 
the color is different from 
that of the neighbors

• Certificate size O(1)
• Message size O(1)

1

1

2

3

2

1
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QMA: Quantum NP

Prover (Merlin)
Unlimited power
＝Any quantum
operations

Verifier (Arthur)
Polynomial-time
Quantum algorithm

| ۧ𝜑

𝑦𝑒𝑠/𝑛𝑜 ?

𝐴 ∈ QMA ⇔

There is a polynomial-time quantum algorithm 𝑉: 

(completeness) 𝑥 ∈ 𝐴𝑦𝑒𝑠 → ∃ 𝜑 : Pr 𝑉 𝑥, 𝜑 = accept] ≥ 2/3

(soundness) 𝑥 ∈ 𝐴𝑛𝑜 → ∀|𝜑〉: Pr 𝑉 𝑥, 𝜑 = reject] ≥ 2/3

Quantum proof

[Knill, Kitaev, Watrous]



Distributed Quantum Merlin-Arthur (dQMA)

• Distributed Quantum Merlin-Arthur (dQMA) 
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

Q. Which problems are efficient for dQMA protocols?

𝑥

𝑧

𝑦

M

|𝑊ۧ

|𝜓ۧ

[FLNP20]

Prover 
(Merlin)



EQ: Equality of Data

• Replicated data on a network

• Are all data identical? 

𝑥

𝑧

𝑦

terminals (nodes who have data) 



EQ: Equality of Data

• Replicated data on a network

• Are all data identical? 

• No O(1) round protocol
• Ω(𝑟) rounds are needed              

(𝑟：diameter of the network)

• We assume the nodes do not 
share prior randomness (& 
entanglement)

• ∃ 1 round “NP-like” protocol 
(distributed certification)

𝑥

𝑧

𝑦

terminals (nodes who have data) 



dMA Protocol for EQ 

𝑥

𝑥

𝑥

M

Prover 
(Merlin)

Trivial protocol:
(P) Prover M sends 𝑥 when all 
data are 𝑥
(V) Each node checks if it is 
same as the neighbor’s one

(YES case: Completeness)
∃𝑊[all nodes accept]

𝑥
𝑥

𝑥
𝑥

𝑥

𝑥

𝑥



dMA Protocol for EQ

𝑥

𝑥

𝑥′

M

Prover 
(Merlin)

Trivial protocol:
(P) Prover M sends 𝑥 when all 
data are 𝑥
(V) Each node checks if it is 
same as the neighbor’s one

(NO case: Soundness)
∀𝑊[some node rejects]

𝑥
𝑥

𝑥
𝑥

𝑥

𝑥

𝑥



dMA Protocol for EQ

𝑥

𝑥

𝑥′

M

Prover 
(Merlin)

Trivial Protocol is
communication inefficient
• Prover M sends 𝑛 bits for each 

node (𝑛 ≔ length of 𝑥)
• Each node sends 𝑛 bits to the 

neighbors

𝑥
𝑥

𝑥
𝑥

𝑥

𝑥

𝑥



Results for EQ

• Distributed Quantum Merlin-Arthur (dQMA) 
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

• Classical lower bound for EQ
• Any dMA protocol requires Ω(𝑛)-bit certificates if error 

probability is reasonably small (say, 1/4)

M

[FLNP20]

𝑥 𝑦



Results for EQ

• Distributed Quantum Merlin-Arthur (dQMA) 
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

• Classical lower bound for EQ
• Any dMA protocol requires Ω(𝑛)-bit certificates if error 

probability is reasonably small (say, 1/4)

• Quantum upper bound for EQ
• ∃ dQMA protocol for equality of replicated data with 
𝑂(𝑡𝑟2 log(𝑛 + 𝑟))-qubit certificates & messages

• 𝑡:= number of the terminals (= nodes who have data)

• 𝑟 ≔ diameter of the network

• 𝒕 and 𝒓 are typically much smaller than 𝒏

𝑥

𝑧

𝑦

M

|𝑊ۧ

|𝜓ۧ

[FLNP20]



KLNP20 Protocol for a line (Prover phase)

• Honest prover (when 𝑥 = 𝑦) sends certificate |ℎ𝑥ۧ (quantum 
fingerprint of 𝑥 [BCWW01]) to each of the intermediate nodes
• |ℎ𝑥ۧ is almost orthogonal to |ℎ𝑦ۧ if 𝑥 ≠ 𝑦

• Length of |ℎ𝑥ۧ is 𝑂(log 𝑛)

• The left node creates |ℎ𝑥ۧ and the right node creates |ℎ𝑦ۧ

M

𝑥 𝑦
|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ

|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ
|ℎ𝑦ۧ



KLNP20 Protocol for a line (Verification phase)

1. Each node 𝑣𝑗 (except right node) chooses 𝑏𝑗 ∈ {0,1}
uniformly at random: if 𝑏𝑗 = 0, 𝑣𝑗 sends the state to the 
right neighbor; otherwise, keep it by itself. 

2. Each node (except left node) does SWAP test if it has two 
states, and outputs its result (accept/reject), and accepts  
otherwise 

𝑥 𝑦
|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ

|ℎ𝑥ۧ |ℎ𝑥ۧ |ℎ𝑥ۧ
|ℎ𝑦ۧ

𝑏2 = 0 𝑏3 = 1

M

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6



General Graphs for EQ

• Merlin sends a rooted tree with 
quantum certificates:
• Root is a terminal

• Leaves are the other terminals

• Run the protocols on lines from the 
root to terminals in parallel  

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑎

𝑏

𝑐

|ℎ𝑎ۧ

|ℎ𝑎ۧ
|ℎ𝑎ۧ

|ℎ𝑎ۧ

|ℎ𝑎ۧ

|ℎ𝑎ۧ

|ℎ𝑎ۧ

𝑑



More Problems on a line graph

• EQ

• SetEQ

• State generation



SetEQ (2-parties 𝑃1 & 𝑃2)

• Input
• Each party 𝑃𝑗 has two lists of 𝑙 elements in a finite set 𝑈

• 𝑎𝑗 = (𝑎𝑗,1, 𝑎𝑗,2, … , 𝑎𝑗,𝑙 )

• 𝑏𝑗 = (𝑏𝑗,1, 𝑏𝑗,2, … , 𝑏𝑗,𝑙 )

• Output
• 1 (yes) iff 𝐴 ≔ {𝑎𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} and 𝐵 ≔ {𝑏𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} are 

the same as multisets



SetEQ (2-parties 𝑃1 & 𝑃2)

• Input

• Each party 𝑃𝑗 has two lists of 𝑙 elements in a finite set 𝑈

• 𝑎𝑗 = (𝑎𝑗,1, 𝑎𝑗,2, … , 𝑎𝑗,𝑙 )

• 𝑏𝑗 = (𝑏𝑗,1, 𝑏𝑗,2, … , 𝑏𝑗,𝑙 )

• Output

• 1 (yes) iff 𝐴 ≔ {𝑎𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} and 𝐵 ≔ {𝑏𝑗,𝑖|𝑗 ∈ {1,2}, 𝑖 ∈ [𝑙]} are the same as 
multisets

Example

𝑃1 𝑃2

𝑎1 = 1,2,2,4,5
𝑏1 = (4,1,3,1,1)

𝑎2 = 5,3,1,1,4
𝑏2 = (4,2,2,5,5)



SetEQ (distributed comp. version)

SetEQ𝑙, 𝑈

• Input
• Graph 𝐺 = (𝑉, 𝐸)

• Each node 𝑢 has two lists of 𝑙 elements in a finite set 𝑈
• 𝑎𝑢 = (𝑎𝑢,1, 𝑎𝑢,2, … , 𝑎𝑢,𝑙 )

• 𝑏𝑢 = (𝑏𝑢,1, 𝑏𝑢,2, … , 𝑏𝑢,𝑙 )

• Output
• 1 (yes) iff 𝐴 ≔ {𝑎𝑢,𝑖|𝑢 ∈ 𝑉, 𝑖 ∈ [𝑙]} and 𝐵 ≔ {𝑏𝑢,𝑖|𝑢 ∈ 𝑉, 𝑖 ∈ [𝑙]} are the 

same as multisets

[NPY20]



Result on SetEQ

[LMN22-1, Thm2] For any small enough 𝜀 > 0, there is a dQMA protocol 
for SetEQ𝑙, 𝑈 on the line of length 𝑟 with completeness 1 − 𝜀 and 
soundness 𝜀 that has 

• certificate size 𝑂(𝑟5 log2 𝑙𝑟 log2 𝑈 )

• message size 𝑂(𝑟2 log 𝑙𝑟 log |𝑈|)



Result on SetEQ

[LMN22-1, Thm2] For any small enough 𝜀 > 0, there is a dQMA protocol for 
SetEQ𝑙, 𝑈 on the line of length 𝑟 with completeness 1 − 𝜀 and soundness 𝜀 that 
has 

• certificate size 𝑂(𝑟5 log2 𝑙𝑟 log2 𝑈 )

• message size 𝑂(𝑟2 log 𝑙𝑟 log |𝑈|)

Cf. dMA protocol

[LMN22-1, Thm3] For any dQMA protocol for SetEQ𝑙, 𝑈 on a line graph of length 
𝑟 with certificate size 𝑠𝑐, completeness 

3

4
and soundness 

1

4
, 

If 𝑈 < 𝑙, then 𝑠𝑐 = Ω( 𝑈 log(𝑙/|𝑈|));

If 𝑈 = Ω(𝑙), then 𝑠𝑐 = Ω 𝑙 ;

If 𝑈 = Ω 𝑟𝑙 , then 𝑠𝑐 = Ω(𝑟𝑙)



More Problems on a line graph

• EQ

• SetEQ

• State generation (SGDI)



Classical problems⇒Quantum problems

• State & Unitary synthesis [Aaronson 16]
• State≒Quantum version of bit strings 

• Unitary≒Quantum version of Boolean circuits

• Interactive proof for State & Unitary synthesis [RY21]

• Complexity of generating a QMA certificate (search-to-
decision reduction of QMA) [INNRY22]

• Pseudorandom states [JLS18,Kre21]



SGDI: State generation on distributed inputs

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟
• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Generate 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟



SGDI: State generation on distributed inputs

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟
• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Generate 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟
• Impossible by 1-round

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟



Verifying SGDI

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟

• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Verify 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟 with the help of the prover

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟

M Prover 
(Merlin)



Properties of Distributed Certification

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑊

(YES case: Completeness) 
∃𝑊[all nodes accept] 
(w.h.p.)
(NO case: Soundness)
∀𝑊[some node rejects]
(w.h.p.)



Verifying SGDI

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟

• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Verify 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟 with the help of 
the prover

𝑣0 𝑣1 𝑣2 𝑣𝑟…

|𝜓ۧ 𝑈1 𝑈2 𝑈𝑟

M

(Completeness) 
∃|𝑊ۧ[all nodes accept
& 𝑣𝑟 outputs |𝜑𝑟ۧ] 
(Soundness)
If all nodes accept with 
probability ≥ 𝜀, the output 
of 𝑣𝑟 satisfies

𝐹2(𝜌, |𝜑𝑟ۧ) ≥ 1 − 𝜀

Prover 
(Merlin)



Result on SGDI

• Line 𝑣0 − 𝑣1 −⋯− 𝑣𝑟

• 𝑣0 has a classical description of an 𝑛-qubit state |𝜓ۧ

• 𝑣𝑗 (𝑗 = 1,2, … , 𝑟) has a unitary transform 𝑈𝑗

• Goal: Verify 𝜑𝑟 ≔ 𝑈𝑟⋯𝑈1|𝜓ۧ at 𝑣𝑟 with the prover

(Completeness) 
∃|𝑊ۧ[all nodes accept
& 𝑣𝑟 outputs |𝜑𝑟ۧ] 
(Soundness)
If all nodes accept with 
probability ≥ 𝜀, the output of 𝑣𝑟
satisfies

𝐹2(𝜌, |𝜑𝑟ۧ) ≥ 1 − 𝜀

[LMN22-1:Thm1]
For any constant 𝜀 > 0, there is a dQMA protocol for SGDI with
• certificate size 𝑂(𝑛2𝑟5)
• Message size 𝑂(𝑛𝑟2)



Proof idea of Thm1 

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC 
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ
𝑈2𝑈1|𝜓ۧ

𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ

FLNP-like test



Proof idea of Thm1 

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC 
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

1

2

𝑘 + 1

𝑚 + 𝑘 + 1

Permute (𝑚 + 𝑘 + 1) registers



Proof idea of Thm1 

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC 
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

1

2

𝑘 + 1

𝑚 + 𝑘 + 1

Permute (𝑚 + 𝑘 + 1) registers

FLNP-like test



Proof idea of Thm1 

• Incorpolate FLNP20 protocol into the idea by Morimae-Takeuchi-
Hayashi [MTH17] for the verification of graph states (one-way LOCC 
de Finnetti by Li-Smith [LS15])

𝑣0 𝑣1 𝑣2 … 𝑣𝑟

|𝜓ۧ 𝑈1 𝑈𝑟𝑈2

M

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

𝑈1|𝜓ۧ 𝑈2𝑈1|𝜓ۧ 𝑈𝑟⋯𝑈2𝑈1|𝜓ۧ|𝜓ۧ

1

2

𝑘 + 1

𝑚 + 𝑘 + 1

Permute (𝑚 + 𝑘 + 1) registers

FLNP-like test

output



Another Improvement

• dQMA protocols have two phases:
• Prover phase

• Verification phase

Q. Can we replace the quantum 
communication of the verification 
phase into classical communication?

• Verification by local operation and 
classical communication (LOCC dQMA
protocol)
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Another Improvement

[LMN22-1, Thm5] For any constant 𝑝𝑐 and 𝑝𝑠 such that 0 ≤ 𝑝𝑠 < 𝑝𝑐 ≤ 1, 
let 𝑃 be a dQMA protocol for some problem on a network 𝐺 with 
completeness 𝑝𝑐 and soundness 𝑝𝑠, certificate size 𝑠𝑐

𝑃 and message size 
𝑠𝑚
𝑃 . For any small enough constant 𝛾 > 0, there is an LOCC dQMA

protocol 𝑃′ for the same problem on 𝐺 with completeness 𝑝𝑐, soundness 
𝑝𝑠 + 𝛾, certificate size 𝑠𝑐

𝑃 + 𝑂(𝑑𝑚𝑎𝑥𝑠𝑚
𝑃 𝑠𝑡𝑚

𝑃 ), where 𝑑𝑚𝑎𝑥 is the maximum 
degree of 𝐺, and 𝑠𝑡𝑚

𝑃 is the total number of qubits sent in the verification 
stage of 𝑃.
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𝑃 ), where 𝑑𝑚𝑎𝑥 is the maximum 
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𝑃 is the total number of qubits sent in the verification stage of 𝑃.

[LMN22-1, Cor1] For any small enough constant 𝜀 > 0, there is an LOCC dQMA protocol 
for 𝐸𝑄𝑛

𝑡 with completeness 1, soundness 𝜀, certificate size 𝑂(𝑑𝑚𝑎𝑥 𝑉 𝑡2𝑟4 log2(𝑛 + 𝑟))
and message size 𝑂( 𝑉 𝑡2𝑟4 log2(𝑛 + 𝑟)), where 𝑟 is the radius of the set of the 𝑡
terminals and |𝑉| is the number of nodes of the network 𝐺 = (𝑉, 𝐸).

Cf. ∃ dQMA protocol for 𝐸𝑄𝑛
𝑡 with 𝑂(𝑡𝑟2 log(𝑛 + 𝑟))-qubit certificates & messages

• Still exponentially better in the length of data 𝑛
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completeness 𝑝𝑐 and soundness 𝑝𝑠, certificate size 𝑠𝑐

𝑃 and message size 
𝑠𝑚
𝑃 . For any small enough constant 𝛾 > 0, there is an LOCC dQMA

protocol 𝑃′ for the same problem on 𝐺 with completeness 𝑝𝑐, soundness 
𝑝𝑠 + 𝛾, certificate size 𝑠𝑐

𝑃 + 𝑂(𝑑𝑚𝑎𝑥𝑠𝑚
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Proof idea: 

• Replace quantum communication in the verification phase into classical 
communication by sharing EPR pairs sent from the prover with the 
original witness

• Use Zhu-Hayashi result [ZH19] for verification of a EPR pair in 
adversarial scenario.



Summary

• Quantum protocols for distributed certification
• EQ

• SetEQ

• SGDI（State generation for distributed inputs）

• Conversion of dQMA protocols to LOCC dQMA ones

• Future work
• Extend SetEQ and SGDI to general graphs

• Quantum advantage on graph size

• Non-trivial lower bound of quantum proof lengths for any problem
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