String topology from the viewpoint of algebraic topology

Shun Wakatsuki

Nagoya University

2023/9/8

Mapping spaces

A, M: topological space

Definition

$$Map(A, M) := \{f: A \to M\}$$
 mapping space

Map(A, M) is

- ullet the space of all continuous maps from A to M
- also a topological space (with compact-open topology)
- an ∞-dim space

Problem in algebraic topology

Study the homotopy type of Map(A, M)

- homotopy type = "shape" of a space
- This is one of the fundamental problems in algebraic topology

Free loop spaces

M: topological space

Definition

$$LM := \operatorname{Map}(S^1, M)$$
 the free loop space on M

- $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$: the unit circle
- ullet LM is the space of all loops on M

String topology

Study algebraic structures on $H_*(LM)$ (under some assumptions on M)

• $H_*(LM)$: the homology of LM (explained in the next page)

Homology

X: topological space, $n \in \mathbb{N}$

Homology

 $H_n(X)$: the *n*-th homology of X

- $H_n(X)$ is a vector space which detects "n-dim holes" on X
- $\alpha \in H_n(X)$: n-dim "cycle" on M
- $\{H_n(X)\}_{n\in\mathbb{N}}$ reflects the "shape" of X

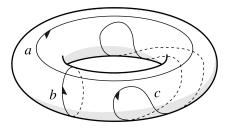


Figure: $H_1(torus)$

image from https://en.wikipedia.org/wiki/Homology_(mathematics)

Shun Wakatsuki String topology 2023/9/8

Loop product

M: oriented connected closed m-dim manifold $LM = \operatorname{Map}(S^1, M)$: the free loop space on M

Loop product [Chas-Sullivan '99]

$$\mu: H_p(LM) \otimes H_q(LM) \to H_{p+q-m}(LM)$$

- $\alpha \in H_n(LM)$: n-dim cycle on LMi.e. n-dim (n-parmeter) family of loops on M
- Mixture of
 - ▶ $H_p(M) \otimes H_q(M) \to H_{p+q-m}(M)$: intersection product
 - $H_p(\Omega M) \otimes H_q(\Omega M) \to H_{p+q}(\Omega M)$: Pontrjagin product
 - induced by $\Omega M \times \Omega M \to \Omega M$ (loop concatenation)
 - $\Omega M := \operatorname{Map}_{\star}(S^1, M)$: based loop space

Construction of the loop product [Chas-Sullivan '99]

 $M = \mathbb{R}^3$ (or 3-dim manifold)

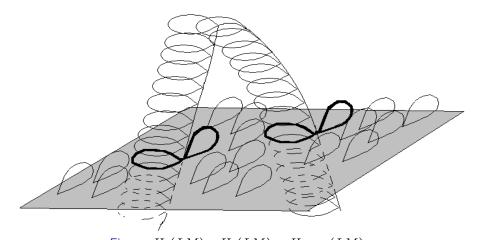


Figure: $H_1(LM) \otimes H_2(LM) \to H_{1+2-3}(LM)$ image from [Chas-Sullivan '99]

Shun Wakatsuki String topology 2023/9/8

Lift of the intersection product

$$\begin{array}{cccc} LM \times LM & \xleftarrow{\mathrm{incl}} & LM \times_M LM & \xrightarrow{\mathrm{concat}} & LM \\ & \downarrow & & \downarrow \\ & M \times M & \longleftarrow & M \end{array}$$

Definition (Loop product)

$$\mu: H_*(LM \times LM) \xrightarrow{\operatorname{incl}^!} H_{*-m}(LM \times_M LM) \xrightarrow{\operatorname{concat}_*} H_{*-m}(LM)$$

 $\Delta^!$: $H_*(M \times M) \to H_{*-m}(M)$: the intersection product $\longrightarrow \operatorname{incl}^!$: $H_*(LM \times LM) \to H_{*-m}(LM \times_M LM)$: lift of $\Delta^!$ There are several ways to define $\operatorname{incl}^!$:

- · Thom isomorphism,
- Eilenberg-Moore isomorphism $(H^*(LM \times_M LM) \cong Tor(\cdots))$,
- etc...

TQFT

Theorem [Cohen-Godin '04]

 $H_*(LM)$ has the structure of 2-dim TQFT

TQFT = Topological Quantum Field Theory

- $\mu: H_*(LM) \otimes H_*(LM) \to H_*(LM)$: loop product
- $\delta: H_*(LM) \to H_*(LM) \otimes H_*(LM)$: loop coproduct
- $(id \otimes \mu) \circ (\delta \otimes id) = \delta \circ \mu = (\mu \otimes id) \circ (id \otimes \delta)$: Frobenius identity

image from https://ncatlab.org/nlab/show/Frobenius+algebra

Generalization

String topology on Gorenstein spaces [Félix-Thomas '09]

Generalized loop (co)product to the case

M: Gorenstein space

- generalization of a manifold (from the viewpoint of Poincaré duality)
- e.g. M = BG: the classifying space of a Lie group G

Brane topology

Generalize LM to $L^kM := \operatorname{Map}(S^k, M)$

- $H_*(L^kM)^{\otimes 2} \to H_*(L^kM)$: brane product [Sullivan-Voronov '03]
- $H_*(L^kM) \to H_*(L^kM)^{\otimes 2}$: brane coproduct [W. '18]
 - The key to define the brane coproduct: $M \hookrightarrow L^{k-1}M$: embedding of "finite codimension" $(\dim \Omega^{k-1}M)$

Thank you for your attention!