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1. Quantization in mathematical physics

Review talk on chiral quantization, partly based on
S.Y., “Derived gluing construction of chiral algebras”,
Lett. Math. Phys., 111 (2021), article 51, 103pp.; arXiv:2004.10055.
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1.1.

Quantization in general

e Let me use the word quantization to mean a mathematical
formulation of the process of building quantum systems from
classical mechanical /Hamiltonian systems.

e Canonical quantization (in physics).

e For finite-dimensional mechanical system (first quantization):
1 ~ ~
{A, B} — E[A B],

replacing the Poisson bracket by commutators.
e For field theory (second quantization), the procedure depends on
the fields being quantized and the interaction.

e | first recall a well-known mathematical formulation of
finite-dimensional case: deformation quantization.

[1/1]
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1.2. Deformation quantization [1/1]

For simplicity, | give an algebraic explanation.
e A classical Hamiltonian system can be encoded by
a Poisson algebra (A, -, {:,}) consisting of c.f. Hayami-san’s talk
e (A,-): a (unital finitely-generated) commutative algebra with product
- encoding the functions on the phase space of the classical system,
e {-,-}: Poisson bracket, a bi-derivation (bilinear form with Leibniz
rule) satisfying the Jacobi identity.
{:,-} is called symplectic if it is non-degenerate.
e Given a Poisson algebra (A, -, {-,-}), a deformation quantization is a
(non-commutative) algebra (A[A] = {>_ 2, anh" | an € A}, %) s.t.
o fxg=1-g+ O(h),
o [f,g] = h{f,g} + O(h?), where [f,g] = fxg —g*f.
A deformation quantization of a Poisson manifold is defined similarly.
[F. Bayen, et. al., Ann. Phys., 1978].

e A universal formula of x-product: Kontsevich's formula.
[M. Kontsevich, LMP, 2003]  c.f. Deligne conjecture in Prof. Kong's talk
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1.3.

Other notions of quantization /1]

Geometric quantization: another finite-dimensional quantization.
e Prequantization: Given a symplectic manifold (= phase space),
construct a line bundle L with connection.
e Polarization: Construct a quantum Hilbert space H from L.
e Half-form correction. c.f. Li-san’s talk

Feynman path integral: perturbative determination of field
quantization (infinite-dimensional).

There are other notions of quantization in mathematics.
e Quantization of algebraic groups by Hopf algebras
(quantum groups). c.f. Hattori-san’'s talk
e Connes' noncommutative geometry involving C*-algebras.
e A version of quantization for functions is g-analogs.

Chiral quantization is a combination of finite-dimensional and
infinite-dimensional (field theory) cases.
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2.1. 1st example: KK Poisson structure and ... [1/2]

Recall the Kostant-Kirillov Poisson algebra RK¥(g) = (R, -, {-,}):

e g: a complex simple Lie algebra with Lie bracket [-,-].
(R,-) =Sym(g) = @, 9°"/Sn: the symmetric algebra of g.
R = C[g*]: the coordinate ring (function alg.) of the affine space g*.
e {-,-}: R® R — R: Kostant-Kirillov Poisson bracket on R,
uniquely determined by {x, y} =[x, y] for x,y € g,
and {xa, b} = {x,b}a+ x{a, b} for x € gand a,b € R.
e Example: g =sl, =Ce+Cf+Ch, e=[33], F =9 ] h=[52%].
R =Cle,f,h], {e,f} =h, {h,e}=e, {hf}=—F.
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2.1. 1st example: ... and affine vertex algebra [2/2]

The chiral quantization of the Kostant-Kirillov Poisson algebra RXK(g) is
the affine vertex algebra Vi (g). c.f. Nishinaka-san's talk

e g: a complex simple Lie algebra.
g = g[t*™!] © CK: the affine Lie algebra associated to g.
(without grading operator D)
Vi(g) = U(8) ®uglgack) Ck
with Cy the 1-dim. rep. where g[t] acts trivially and K acts by k.
(k € C: level, U: the universal enveloping algebra)
It has a unique vertex algebra structure such that 1 :=1® 1 is the
vacuum vector and Y(x_1)1,2) =3 .7 X2z "t X =x @ t".
e There is a canonical Li filtration on the vertex algebra Vi (g) s.t.
the G,-Poisson algebra R(Vi(g)) coincides with the Kostant-Kirillov

Poisson algebra R¥K(g). [Y. Zhu, JAMS, 1996]
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2.2. Vertex algebras [1/1]

c.f. Nishinaka-san's talks and
e A vertex algebra (V,]0), T, Y) consists of
e a linear space V/, called state space,
e an element |0) € V, called vacuum,
e an endomorphism T € End V/, called translation,
e alinear map Y(-,z): V — (End V)[zF!] (state-field corresp.),
denoted as Y(a,z) = a(z) = >, amz "' foreach ac V,
satisfying
(i) a(z)b e V(z) forany a,be V, V(z) ={>2_,vnz"|vs€ V}
(i) Y(|0),z) =idv, a(z)|0) = a+ O(z) for any a € V (vacuum axiom),
(iii) T)0) =0, [T, a(z)] = d:a(z) for any a € V (translation invariance),
(iv) Ya,b €V, AN, € Z>g s.t. (z— w)"ob[a(2), b(w)] =0
(locality, <= operator product expansion in Nishinaka-san’s talk).

e A vertex algebra can be regarded as a linear space V equipped with
infinitely many binary operations (a, b) — a(n)b (n € Z).
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2.3. Chiral quantization — Definition [1/1]

e Li filtration of a vertex algebra V = (V,|0), T, Y): [H. Li, CMP, 2005]

V=FVO>FVOFV>...,
FPV = ((a1)(=m) (@) =nyV | @i,v € V, ni € Zso, 3,0 > ), -
e The 0-th graded part

R(V):=FV/F'V =V/G(V), G(V)=(a_yb|abe V), .

is a Poisson algebra, called Zhu's C>-algebra. [Y. Zhu, JAMS, 1996]

ab= a(_l)b, {57 b} = a(o)b (5 S R( V) for a € V)
The Poisson scheme Spec R(V) is called the associated scheme.

Definition
A chiral quantization of a Poisson algebra R is a vertex algebra V
such that R(V) is isomorphic to R.
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2.4. 2nd example: Slodowy slices and W-algebras [1/2]
g: complex simple Lie algebra.
e The affine vertex algebra Vi(g) is a chiral quantization of R¥K(g).
e The (regular) W-algebra W(g, feg) is a chiral quantization of the
Slodowy slice S, . [T. Arakawa, IMRN, 2015]
Recollection of Slodowy slice and W-algebra:
e f € g: a nilpotent element (:& ad(f) := [x,-] € End(g) is nilpotent).
{e,f,h} C g: slo-triple, g° = {x € g | [x, €] = 0}: centralizer of e.
Ss=f+g°Cg~g" via Killing form.
Sr with the Kostant-Kirillov Poisson structure is called the Slodowy slice.
o Example: g=sl, ={[2 2] |a,b,c€C}, f=feg =[23],
e=[53] ¢g°=Ce.
Steg = freg +0°=[25]-
e Given a nilpotent element f € g and level k € C, we can construct a
vertex algebra Wi (g, f) called the \W-algebra.
e Example: g = sly, f = feg, Wi(sl2, freg) = the Virasoro vertex algebra.
[Lm, Ln] = Lingn + ﬁ(m3 — m)dm,—n-
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2.4. 2nd example: Slodowy slices and W-algebras

e Vi(g) is a chiral quantization of RXK(g).
o Wi (g, feg) is a chiral quantization of S¢

reg *

These two chiral quantizations are related under Hamiltonian reduction.

R(-) KK
Vk(g) taking C-algebra R (g)
quantum classical
Hamiltonian O Hamiltonian
reduction reduction
R(")
Wk(g’ freg) taking Cy-algebra fre

c.f. quantum Hamiltonian reduction = BRST reduction in Hayami-san's talk

[2/2]
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2.5. Existence theorem of chiral quantization [1/1]
Theorem

For any Poisson algebra R, there exists a vertex algebra V
such that R(V) 2 R, i.e., a chiral quantization of R exists.

e For any R, the arc algebra R[t] = {72, ant" | a, € R} has the
structure of level 0 Poisson vertex algebra.
[T. Arakawa, Math. Z., 2012]
e For any Poisson vertex algebra P, there exists a vertex algebra V
such that gr V=P cf [Tamarkin, PICM, 2002], chiral Deligne conjecture

e The associated graded space gr V = @2, F" V/F™1V of Li filtration of
any vertex algebra V has a structure of Poisson vertex algebra.

c.f. Hayami-san's talk

Open problem

3?7 explicit description of the above chiral quantization
(like Kontsevich's formula of deformation quantization)
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3. Application: chiral quantization of Moore-Tachikawa TQFT
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3.1. Moore-Tachikawa 2d Topological QFT [1/3]
[G. Moore, Y. Tachikawa, String-Math 2011; arXiv:1106.5698]
Moore and Tachikawa conjectured the existence of a functor
ne: Bop — HS
between certain symmetric monoidal categories with duality.
The source category Bo, is the 2-bordism category.
o Objects: (S')" for n € Z>o, identified with n.
e Morphisms: ¥, n4n, : N1 — n2, 2-dim. oriented manifolds
with genus g and boundary (S')™ U —(S')™.
e Composition = gluing.
0 : =

(20’2+3 12— 3) o (2172+2 12— 2) = (22,2+3 12— 3)

e ® = L, disjoint union of manifolds.
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3.1. Moore-Tachikawa 2d Topological QFT [2/3]

The target HS is the category “of holomorphic symplectic varieties” :
o Objects: semisimple algebraic groups over C.

e Morphisms: X: Gi — Gz, holomorphic symplectic variety X
with Hamiltonian G; x Gy-action.
G ~ (Y,w) is Hamiltonian if 3u: Y — g* := Lie(G)*, the moment map, s.t.
(du(-), &) = —eg, w with Ey(y) = %et?y’t_o for € € g,
and p(g.y) = ad;_, u(y) for g € G. B
The identity morphism idg := T*G = G x g*.

e Composition: For X12 € Homus(Gi, G2) and Xa3 € Homps( Gz, G3),
Xz 0 X1z 1= (X X Xa3) [/ uA(G2) = 7 (0)/A(G).
//w: Hamiltonian reduction (symplectic quotient) for the moment map
e X1z X Xo3 — g5 = Lie(G2)",  p(x,y) := —p12(x) + pa3(y)
with 1o the g5-component of momentum map X1 — g7 X g5.

e ®: given by Cartesian product.
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3.1. Moore-Tachikawa 2d Topological QFT [3/3]

Moore and Tachikawa conjectured that, for each 1-conn. semisimple G,
there exists a functor n¢: Boa — HS with ng(n) = G" and
16 (Zg,m+m) : holo. symplectic variety with Ham. G™*™-action

(Moore-Tachikawa symplectic variety).

A functor from Boy is called a 2d topological QFT (Atiyah-Segal),
and 7 is called Moore-Tachikawa TQFT. c.f. Wakatsuki-san's talk

The functoriality of 7c means that taking symplectic quotients of
ne(X)'s is compatible with gluing bordisms X's.

gluing
’ "
nc(zg’,n2+n3 © zg7’71+’72) nG(Zg”,n1+n3)

functoriality

(nG():g,ernz)OP X UG():;r’,anrng))

JA(G™)

nG(Zlg'ynrH‘ls) °© nG(zg,nﬁ-nz) =
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3.2. BFN construction of 7 [1/2]

[A. Braverman, M. Finkelberg, H. Nakajima, Adv. Theor. Math. Phys., 2019]

Theorem (Braverman-Finkelberg-Nakajima)
Moore-Tachikawa 2d TQFT n¢ exists.

e They introduced, in some equivariant derived constructible category
D¢, (Grg) on the affine Grassmannian

Grg = Gc/Go, Go = G(C[z]), Gk = G(C((2))),

two distinguished objects A, B € D¢, (Grg) which are ring objects
with respect to the convolution product *.

e Using these ring objects for the Langlands dual G*, they showed that
n6(Tg.n) = Spec(HZé (Grge, i!A(Ax” X Bﬁg)),*)

has a symplectic structure, and satisfies the gluing condition
ne(X o X') ~ng(X) one(X').
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3.2. BFN construction of 7 [2/2]

A few varieties in genus zero part can be described explicitly.
Denoting W2 := n¢(Xg=0,n), the gluing condition gives
WZo WZ ~ WiHm=2,
e The case n = 2 is already explained:
We=ne(() ) =id¢=T"G=Gxg".

e The case n =1 is a bit non-trivial.

W} =n6((1>) = n6(C) = 6 x 5.
with S¢ C g* the Slodowy slice of the regular nilpotent fieg € g.
e The case n =3 for G =SL; and SL3 is
WS?)LZ - ((C2)><37 W53|_3 = Omin in Eﬁ.

Onmin: closure of coadjoint orbit of minimal nilpotent element
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3.3. Arakawa’s chiral quantization 7', [1/2]
[T. Arakawa, arXiv:1811.01577]

e Arakawa considered “chiral quantization” of ng:

nd: Boy — HSCh,
o Target category HS:
e Objects: semisimple algebraic groups (the same as HS).
e Morphisms V: G; — Gy: vertex algebras V equipped with
V7h1v (g1) ® V—hQV (g2) = V (+ some cond.).
e Composition of Via: G — Gy and Vo3: Gy — Ga:

=10/~ o
Vas o Vig i= H 2 7(§_ony , 02, Vi3’ ® Va3),

]

H2 T*(.,-,-): relative BRST (semi-infinite) cohomology
(quantum Hamiltonian reduction)

e The functor n2 should sit in a commutative diagram

G
Boy -----%---- > HSh
H lSpec R(—) taking associated scheme
NG
Bo, ——— HS
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3.3. Arakawa’s chiral quantization 7', [2/2]
e Arakawa built genus 0 part ngtg:O: Bo2|g:0 — HSM.

Theorem (Arakawa)

3 a family {VE , = 1@ ,_o(Xg=0.n) | n € Zxo} of vertex algebras s.t.
S ~ 0 h S . 7ch S S~ VS
VG,1 ~ Hps(Dg'), VG,2 ~ D¢, VG,m © VG,n = VG,m+n727
and their associated schemes are Moore-Tachikawa symplectic varieties:

W ~ Spec R(V¢ ).

e As a corollary, Beem-Rastelli conjecture  [C. Beem, L. Rastelli, JHEP, 2018]

2

Miiggs(T) ~ Specm R(V/(T)) VT: N =24d SCFT
V: {4d N =2 SCFTs} — {conformal vertex algebras}

is affirmatively solved for genus 0 class S theories T = Tz"’; -
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3.4. Toward higher-genus quantization [1/4]

e In order to extend Arakawa's functor nghgzo to the case g > 0,
the target category HS®" should be enlarged.
| built such an enlarged target. [S.Y., Lett. Math. Phys., 2021].

e | constructed an oo-category MT which will be the target of the
extension 7& of Arakawa's W%}:g:o- This MT" sits in the following
commutative diagram.

ch
NG,g=0

Boy = MTE == HSh

NG
H dSpec R(—)\L J{R(—)
nder

Bop "t MT s 1S
ne

o MT s designed to give a ‘“chiral quantization” of the co-category
MT of derived Moore-Tachikawa varieties. [D. Calaque, 2015]
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3.4. Toward higher-genus quantization [2/4]

e The co-category MT of derived Moore-Tachikawa varieties [Calaque]:

e Objects: semisimple algebraic groups (same as HS)
e Morphisms X: G; — G: derived Poisson scheme X
with Hamiltonian (g1 @ g2)-action.
c.f. Hayami-san's talk

e Composition of Xi2 € Mapy1(Gi, G2) and X3 € Mapy,1( Gz, G3):
X230 X1 = (Xlozp ® X23) //H[L Sym(g2).
//i';: derived Hamiltonian reduction of derived Poisson schemes
pi=—p2, ®14+1® pi;. The composition G is called derived gluing.
e The co-category MT" [Y.]:
o Objects: semisimple algebraic groups (same as HS, HS").
e 1-Morphisms: dg vertex algebras V' with pv: Vi(g1) ® Vi(g2) — V.
e Compositions of Vio: Gi — Gz and Vaz: G — Gs is given by

derived quantum Hamiltonian reduction:
V35 Vs := BRST(gi4m, Vi3 ® Vs, ) (chiral derived gluing).
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3.4. Toward higher-genus quantization [3/4]

Theorem ([S.Y., LMP, 2021])

Taking derived associated scheme gives a functor
dSpec R(—): MT" — MT,
i.e., dSpec R(V 5 W) ~ dSpec R(V') © dSpec R(W).

| also constructed an oo-category MT° of dg Poisson vertex algebras and
related functors, which sit in the following commutative diagram:

c.f. Hayami-san's talk

Y/ A N
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3.4. Toward higher-genus quantization [4/4]

e | expect the existence of the functors n&' and n¢e" making the
following diagram commute:

ch
16,g=0

/—\

Bo, >y MTh 5 HSh

i
| o o
der O(.
ne

Open problem

Describe dg vertex algebras (X ~0,n) € MTE,
in particular n&(X1,1), explicitly.

Thank you.
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