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Pontryagin duality is an important notion to study representation theory of groups.

For any Abelian group A, one can define its Pontryagin dual as

A := Hom(A, U(1)).

Example

o« 7~ U(1) and U(T):Z.
e For any positive integer n, one has Zﬁr ~ 7 /n. However, there is no canonical
choice of such an isomorphism.
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1. For any two Abelian groups A and B, we have AxB:=AxB.
2. If Ais finite, its Pontryagin dual factors through Q/Z C U(1).

Therefore, Pontryagin duality for finite Abelian groups is determined by counting

isomorphisms (for prime number p and positive integer k)
Z/p* ~ 7./ p,
or equivalently, counting non-degenerate pairings

Z/p* x Z/p* — Q/Z.

In a on-going joint project with Mo Huang and Zhi-Hao Zhang, we would like to

categorify this above notion of Pontryagin duality. So let us first recall basic definitions.
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For us, a 2-group G is a monoidal category whose all morphisms are invertible, and all
objects are invertible with respect to the monoidal product.

We denote the group of isomorphism classes of objects in G by 71(G) and the group of
endomorphisms on the monoidal unit by m2(G). This notion is consistent with the
topological approach, where one can deloop monoidal category G to get a 2-category
BG with one single object, and then its geometric realization is a pointed topological

space with w1 and 7, agree with our above conventions.

A 2-group G is finite if we have both 71(G) and m2(G) to be finite groups.
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A braided 2-group is a 2-group whose underlying monoidal category is equipped with a
braiding.

A symmetric 2-group is a braided 2-group whose underlying braiding is symmetric.
Symmetric 2-groups are categorications of Abelian groups. So we are going to define
their Pontryagin duals as follows.

Pontryagin dual
Let A be a symmetric 2-group, we define its Pontryagin dual to be the category of
braided functors

-~

A = Funp, (A, BU(1)).

It is equipped with a pointwise symmetric monoidal structure inherited from BU(1).
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Example

e BU(1) ~ Z, and Z ~ BU(1).

e U(l)~BZ~ U(1).
. B/Z% ~ Z/n, and 2;7 ~ BZ/n for any postive integer n.

By definition, for symmetric 2-groups A and B, one has AxB~ AxB.

For finite symmetric 2-group A, its Pontryagin dual factors through BQ/Z.
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Strictification Theorem (Joyal-Street;Johnson-Osorno)

Every symmetric 2-group is equivalent to one with trivial associators and unitors. In
particular, such a strict symmetric 2-group A is determined by Abelian groups 71 (.A),
ma(A) together with a group homomorphism f : 71 (A) — m2(A) corresponding to
tensoring with the generator of 71(S) ~ Z/2.

Unlike finite Abelian groups, not every symmetric 2-group is Pontryagin self-dual. Using
the above strictification theorem, we know that if a finite symmetric 2-group A is
equivalent to its Pontryagin dual A, then one must have

o m1(A) ~ 7;(7) and m(A) ~ m1(A),

e for a fixed choice of the above equivalence, we need f : m1(A) — m2(A) to be

—

identified with its dual f : 7;(7) — m1(A).
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Let us recall the Fourier transform on a finite Abelian group A. One can view it on
different levels of abstraction.

On the level of objects

For any C-valued function f on A, we define its Fourier transform to be a C-valued
function on its Pontryagin dual A:

F(f): ASC;, pr Z f(x)p(x)

XEA

Conversely, for any C-valued function g on A, we define the inverse Fourier transform
to be

Flg):A=C; XH’azg
pEA
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More importantly, Fourier transform and its inverse are not only isomorphisms of vector
spaces, but also isomorphisms between Hopf algebras

~

Fun(A) ~ C[A],  C[A] ~ Fun(A),

which interchange pointwise products and convolution products.
On the level of vector spaces

For any finite dimensional A-representation (V/, py/), there is a canonical Z—grading on
its isotypical decomposition V = G}pe;\ V,, where for any p € A,

Vp:={veV|¥xeAn/py(x)(v)=px)v}
This induces an equivalence of symmetric monoidal categories

Rep(A) ~ Vect ;.
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On the level of categories

o~

There is an equivalence of symmetric monoidal 2-categories 2Rep(A) ~ 2Rep(A).

1. Vect is an invertible bimodule category between Vects and Rep(A) ~ Vect ;.
2. Given a finite semisimple category C with A-action, we construct its
equivariantization
CA = Vect @VectA C,
which inherits an A-action by (1).

3. Given a finite semisimple category D with A-action, we construct its
equivariantization

DA := Vect Ryect; D,

which inherits an A-action by (1).
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Finally, we would like to categorify the theory of Fourier transform. By comparison, we
expect the follows.

On the level of objects
Let A be a finite symmetric 2-group.

e For a functor f : A — Vect, we define its Fourier transform to be
A = Vect; prs / f(x) @ p(x).
x:A
e For a functor g : A= Vect, we define the inverse Fourier transform to be

A — Vect; x— / _g(p) ® p(x).
p:A

They provides an equivalence of categories Fun(.A, Vect) ~ Fun(;l\, Vect).
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Fourier transform described above becomes an equivalence of symmetric monoidal
categories, if

1. the LHS is equipped with pointwise product and the RHS is equipped with the
convolution product;

2. the LHS is equipped with convolution product and the RHS is equipped with the
pointwise product.

Moreover, depending on the symmetric monoidal structures, there are several
symmetric co-monoidal structures such that altogether thery form Hopf algebra objects
in 2Vect. Then the above equivalences preserve all these Hopf structures.
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On the level of 1-categories

For any finite semisimple category V with py : A — End(V), we consider its isotypical

V:/AVP,
p:A

where V), consists of pairs (v, $"): v is an object in VV and

decomposition

(6Y)x : pv(x)(v) = p(x) ® v is a natural isomorphism with respect to x in A.

Viewed as an .Z—grading on V, this provides an equivalence of 2-categories
2Rep(A) = 2Vect 3.

Moreover, this equivalence preserves symmetric monoidal structures: the LHS is
equipped with pointwise product while the RHS is equipped with convolution product.
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| would like to remind the audience that, unlike Abelian groups, the same underlying
2-group could have several different symmetric monoidal structures. Therefore, the
equivalence seems paradoxical at first: 2Rep(.A) ~ 2Vect g, since the LHS doesn't
depend on the symmetric monoidal structures of A by definition, but the RHS obviously

depends on the symmetric monoidal structures.

The reason is that, even though A could have several different symmetric monoidal
structures which lead to potentially different Pontryagin duals A, they have to become

equivalent after linearization.

Interpreted in another way, this warns us that to determine A, it is not enough to know
all the invertible objects in 2Rep(.A), which turns out to be Fung (A, BU(1)). In
addition, we need to specify a section of group homomorphism that goes from the
invertible objects in 2Rep(.A) to the group of connected components in 2Rep(.A).
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On the level of 2-categories

There is an equivalence of symmetric 3-categories 3Rep(.A) ~ 3Rep(./zt\).

1. 2Vect is an invertible bimodule 2-category between 2Vect 4 and 2Vect ;.

2. Given a finite semisimple 2-category € with A-action, we construct its
equivariantization
¢4 .= 2Vect Mpvect , €,

which inherits an A-action by (1).

3. Given a finite semisimple 2-category ® with A-action, we construct its
equivariantization

@A = 2Vect ®2Vect2 9,

which inherits an A-action by (1).
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For outlooks,

1. We would like to apply this construction to understand the fusion rules of
2-representations of general 2-groups, or even better, to understand the fusion
rules of general fusion 2-categories.

2. Pontryagin self duality and Fourier transform also plays an important role in the
study of Tambara-Yamagami categories. It would be interesting to generalize this
to 2-groups and corresponding lattice models.

3. Pontryagin duality and Fourier transform can be defined for non-finite symmetric
2-groups. Could we find a framework that extends our discussion of fusion
2-categories?
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