SUSTech-Nagoya workshop on Quantum Science

Pontryagin Duality For 2-Groups

Hao Xu

Mathematical Institute, Georg-August-Universität Göttingen

hao.xu@mathematik.uni-goettingen.de

joint with Mo Huang and Zhi-Hao Zhang

September 2024

Pontryagin duality is an important notion to study representation theory of groups.

For any Abelian group A, one can define its Pontryagin dual as

$$\widehat{A} := \operatorname{Hom}(A, U(1)).$$

Example

- $\widehat{\mathbb{Z}} \simeq U(1)$ and $\widehat{U(1)} \simeq \mathbb{Z}$.
- For any positive integer n, one has $\mathbb{Z}/n \simeq \mathbb{Z}/n$. However, there is no canonical choice of such an isomorphism.

- 1. For any two Abelian groups A and B, we have $\widehat{A \times B} := \widehat{A} \times \widehat{B}$.
- 2. If A is finite, its Pontryagin dual factors through $\mathbb{Q}/\mathbb{Z} \subset U(1)$.

Therefore, Pontryagin duality for finite Abelian groups is determined by counting isomorphisms (for prime number p and positive integer k)

$$\widehat{\mathbb{Z}/p^k} \simeq \mathbb{Z}/p^k$$
,

or equivalently, counting non-degenerate pairings

$$\mathbb{Z}/p^k \times \mathbb{Z}/p^k \to \mathbb{Q}/\mathbb{Z}$$
.

In a on-going joint project with Mo Huang and Zhi-Hao Zhang, we would like to categorify this above notion of Pontryagin duality. So let us first recall basic definitions.

For us, a 2-group \mathcal{G} is a monoidal category whose all morphisms are invertible, and all objects are invertible with respect to the monoidal product.

We denote the group of isomorphism classes of objects in \mathcal{G} by $\pi_1(\mathcal{G})$ and the group of endomorphisms on the monoidal unit by $\pi_2(\mathcal{G})$. This notion is consistent with the topological approach, where one can deloop monoidal category \mathcal{G} to get a 2-category $B\mathcal{G}$ with one single object, and then its geometric realization is a pointed topological space with π_1 and π_2 agree with our above conventions.

A 2-group \mathcal{G} is finite if we have both $\pi_1(\mathcal{G})$ and $\pi_2(\mathcal{G})$ to be finite groups.

A braided 2-group is a 2-group whose underlying monoidal category is equipped with a braiding.

A symmetric 2-group is a braided 2-group whose underlying braiding is symmetric. Symmetric 2-groups are categorications of Abelian groups. So we are going to define their Pontryagin duals as follows.

Pontryagin dual

Let ${\mathcal A}$ be a symmetric 2-group, we define its Pontryagin dual to be the category of braided functors

$$\widehat{\mathcal{A}} := \operatorname{\mathsf{Fun}}_{\mathit{br}}(\mathcal{A}, \operatorname{B}U(1)).$$

It is equipped with a pointwise symmetric monoidal structure inherited from $\mathrm{B}U(1)$.

Example

- $\widehat{\mathrm{B}U(1)}\simeq\mathbb{Z}$, and $\widehat{\mathbb{Z}}\simeq\mathrm{B}U(1)$.
- $\widehat{U(1)} \simeq \mathrm{B}\mathbb{Z} \simeq U(1)$.
- $\widehat{\mathrm{BZ}/n} \simeq \mathbb{Z}/n$, and $\widehat{\mathbb{Z}/n} \simeq \mathbb{BZ}/n$ for any postive integer n.

By definition, for symmetric 2-groups $\mathcal A$ and $\mathcal B$, one has $\widehat{\mathcal A \times \mathcal B} \simeq \widehat{\mathcal A} \times \widehat{\mathcal B}$.

For finite symmetric 2-group A, its Pontryagin dual factors through $B\mathbb{Q}/\mathbb{Z}$.

Strictification Theorem (Joyal-Street; Johnson-Osorno)

Every symmetric 2-group is equivalent to one with trivial associators and unitors. In particular, such a strict symmetric 2-group $\mathcal A$ is determined by Abelian groups $\pi_1(\mathcal A)$, $\pi_2(\mathcal A)$ together with a group homomorphism $f:\pi_1(\mathcal A)\to\pi_2(\mathcal A)$ corresponding to tensoring with the generator of $\pi_1(\mathbb S)\simeq\mathbb Z/2$.

Unlike finite Abelian groups, not every symmetric 2-group is Pontryagin self-dual. Using the above strictification theorem, we know that if a finite symmetric 2-group \mathcal{A} is equivalent to its Pontryagin dual $\widehat{\mathcal{A}}$, then one must have

- $\pi_1(\mathcal{A}) \simeq \widehat{\pi_2(\mathcal{A})}$ and $\pi_2(\mathcal{A}) \simeq \widehat{\pi_1(\mathcal{A})}$,
- for a fixed choice of the above equivalence, we need $f: \pi_1(A) \to \pi_2(A)$ to be identified with its dual $\widehat{f}: \widehat{\pi_2(A)} \to \widehat{\pi_1(A)}$.

Let us recall the Fourier transform on a finite Abelian group A. One can view it on different levels of abstraction.

On the level of objects

For any \mathbb{C} -valued function f on A, we define its Fourier transform to be a \mathbb{C} -valued function on its Pontryagin dual \widehat{A} :

$$\mathcal{F}(f): \widehat{A} \to \mathbb{C}; \quad p \mapsto \sum_{x \in A} f(x)p(x).$$

Conversely, for any \mathbb{C} -valued function g on \widehat{A} , we define the inverse Fourier transform to be

$$\mathcal{F}^{-1}(g):A o\mathbb{C};\quad x\mapstorac{1}{|G|}\sum_{p\in\widehat{A}}g(p)p(x).$$

More importantly, Fourier transform and its inverse are not only isomorphisms of vector spaces, but also isomorphisms between Hopf algebras

$$\operatorname{Fun}(A) \simeq \mathbb{C}[\widehat{A}], \qquad \mathbb{C}[A] \simeq \operatorname{Fun}(\widehat{A}),$$

which interchange pointwise products and convolution products.

On the level of vector spaces

For any finite dimensional A-representation (V, ρ_V) , there is a canonical \widehat{A} -grading on its isotypical decomposition $V = \bigoplus_{p \in \widehat{A}} V_p$, where for any $p \in \widehat{A}$,

$$V_p := \{ v \in V \mid \forall x \in A, \rho_V(x)(v) = p(x)v \}.$$

This induces an equivalence of symmetric monoidal categories

$$\operatorname{\mathsf{Rep}}(A) \simeq \operatorname{\mathsf{Vect}}_{\widehat{A}}.$$

On the level of categories

There is an equivalence of symmetric monoidal 2-categories $2\text{Rep}(A) \simeq 2\text{Rep}(\widehat{A})$.

- 1. Vect is an invertible bimodule category between Vect_A and $\operatorname{Rep}(A) \simeq \operatorname{Vect}_{\widehat{A}}$.
- 2. Given a finite semisimple category $\mathcal C$ with A-action, we construct its equivariantization

$$\mathcal{C}^A := \mathsf{Vect} \boxtimes_{\mathsf{Vect}_A} \mathcal{C},$$

which inherits an \widehat{A} -action by (1).

3. Given a finite semisimple category $\mathcal D$ with $\widehat{\mathcal A}$ -action, we construct its equivariantization

$$\mathcal{D}^{\widehat{A}} := \mathsf{Vect} \boxtimes_{\mathsf{Vect}_{\widehat{A}}} \mathcal{D},$$

which inherits an A-action by (1).

Finally, we would like to categorify the theory of Fourier transform. By comparison, we expect the follows.

On the level of objects

Let A be a finite symmetric 2-group.

• For a functor $f: A \to \text{Vect}$, we define its Fourier transform to be

$$\widehat{\mathcal{A}} o \mathsf{Vect}; \quad p \mapsto \int_{x:\mathcal{A}} f(x) \otimes p(x).$$

• For a functor $g:\widehat{\mathcal{A}}\to\mathsf{Vect}$, we define the inverse Fourier transform to be

$$\mathcal{A} o \mathsf{Vect}; \quad x \mapsto \int_{p:\widehat{\mathcal{A}}} g(p) \otimes p(x).$$

They provides an equivalence of categories $\operatorname{Fun}(A,\operatorname{Vect})\simeq\operatorname{Fun}(\widehat{A},\operatorname{Vect})$.

Fourier transform described above becomes an equivalence of symmetric monoidal categories, if

- 1. the LHS is equipped with pointwise product and the RHS is equipped with the convolution product;
- 2. the LHS is equipped with convolution product and the RHS is equipped with the pointwise product.

Moreover, depending on the symmetric monoidal structures, there are several symmetric co-monoidal structures such that altogether thery form Hopf algebra objects in 2Vect. Then the above equivalences preserve all these Hopf structures.

On the level of 1-categories

For any finite semisimple category V with $\rho_{V}: A \to \operatorname{End}(V)$, we consider its isotypical decomposition

$$\mathcal{V}\simeq\int_{oldsymbol{p}:\widehat{\mathcal{A}}}\mathcal{V}_{oldsymbol{p}},$$

where \mathcal{V}_p consists of pairs (v, ϕ^v) : v is an object in \mathcal{V} and $(\phi^v)_x : \rho_{\mathcal{V}}(x)(v) \to p(x) \otimes v$ is a natural isomorphism with respect to x in \mathcal{A} .

Viewed as an $\widehat{\mathcal{A}}$ -grading on \mathcal{V} , this provides an equivalence of 2-categories

$$2\mathsf{Rep}(\mathcal{A}) \simeq 2\mathsf{Vect}_{\widehat{A}}.$$

Moreover, this equivalence preserves symmetric monoidal structures: the LHS is equipped with pointwise product while the RHS is equipped with convolution product.

13 / 16

I would like to remind the audience that, unlike Abelian groups, the same underlying 2-group could have several different symmetric monoidal structures. Therefore, the equivalence seems paradoxical at first: $2\text{Rep}(\mathcal{A}) \simeq 2\text{Vect}_{\widehat{\mathcal{A}}}$, since the LHS doesn't depend on the symmetric monoidal structures of \mathcal{A} by definition, but the RHS obviously depends on the symmetric monoidal structures.

The reason is that, even though \mathcal{A} could have several different symmetric monoidal structures which lead to potentially different Pontryagin duals $\widehat{\mathcal{A}}$, they have to become equivalent after linearization.

Interpreted in another way, this warns us that to determine $\widehat{\mathcal{A}}$, it is not enough to know all the invertible objects in $2\text{Rep}(\mathcal{A})$, which turns out to be $\text{Fun}_{\otimes}(\mathcal{A}, \mathrm{B}U(1))$. In addition, we need to specify a section of group homomorphism that goes from the invertible objects in $2\text{Rep}(\mathcal{A})$ to the group of connected components in $2\text{Rep}(\mathcal{A})$.

On the level of 2-categories

There is an equivalence of symmetric 3-categories $3\text{Rep}(A) \simeq 3\text{Rep}(\widehat{A})$.

- 1. 2Vect is an invertible bimodule 2-category between $2\text{Vect}_{\mathcal{A}}$ and $2\text{Vect}_{\widehat{\mathcal{A}}}$.
- 2. Given a finite semisimple 2-category ${\mathfrak C}$ with ${\mathcal A}$ -action, we construct its equivariantization

$$\mathfrak{C}^{\mathcal{A}} := 2\mathsf{Vect} \boxtimes_{2\mathsf{Vect}_{\mathcal{A}}} \mathfrak{C},$$

which inherits an $\widehat{\mathcal{A}}$ -action by (1).

3. Given a finite semisimple 2-category ${\mathfrak D}$ with $\widehat{{\mathcal A}}$ -action, we construct its equivariantization

$$\mathfrak{D}^{\widehat{\mathcal{A}}} := 2 \mathsf{Vect} \boxtimes_{2 \mathsf{Vect}_{\widehat{\mathcal{A}}}} \mathfrak{D},$$

which inherits an A-action by (1).

For outlooks,

- 1. We would like to apply this construction to understand the fusion rules of 2-representations of general 2-groups, or even better, to understand the fusion rules of general fusion 2-categories.
- 2. Pontryagin self duality and Fourier transform also plays an important role in the study of Tambara-Yamagami categories. It would be interesting to generalize this to 2-groups and corresponding lattice models.
- 3. Pontryagin duality and Fourier transform can be defined for non-finite symmetric 2-groups. Could we find a framework that extends our discussion of fusion 2-categories?