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Tensor Networks
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Various applications in qguantum physics [from arXiv:1802.01040]



Contraction rule

 Open leg = index of the tensor

i J
Agp € C B, €C
i=1,..,d i=1,..,d
ab=1,..,D c=1,..,D

At = (AL,): matrix |BJY == (B]): vector

 Connected leg = sum over the index

vector




Matrix Product states
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P The number of parameters needed to specify a MPS = dND? « dV

P Always satisfies an area law of entanglement: 5(X)y = —Trpxlogpx < logD

What are these states?



MPS and 1D gapped physics

P 1D frustration-free, local, gapped Hamiltonian:
H —_ z hi
L

% hi -
frustration-free ; IA >0

, En “~GDS my < o
hihPGS) = O,Vl. N < N — oo

MPS D 1D local gapped frustration-free ground states
* Any 1D gapped ground state can be approximated by a MPS [Hastings, '07; Arad et al., "13]

D ~ poly(N,1/€)

local Ey gapped

»

MPS c 1D local gapped frustration-free ground states
* Any MPS has a 1D local, gapped Hamiltonian H s.t. the MPS is a ground state of H
[Fannes, et al., '92; Nachtergaele, '96]



Renormalization Group flow of MPS

P MPS has a physically reversible coarse-graining operation.
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Use the polar decomposition of tensor AA = VA (d > D? w.l.o.g.).

P The RG-fixed point is achieved by iteration = Isometric MPS
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P The RG-fixed point is useful to characterize quantum gapped phases [Schuch et al., ‘11]
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Matrix Product Density Operators (MPDO)

pMPDO = Z Tr(Milleizjz ...MiNjN)liliz iN)(jljZ ]Nl Mikjk: D X D matrIX (for eaCh lk,]k)
Lj

* A natural generalization of Matrix Product States to 1D mixed states.

* A good ansatz for thermal states and steady states in 1D systems.

P Any Gibbs states of 1D local Hamiltonian can be approximated by a MPDO [Hastings ‘06].

MPDO 2 PGibbs = %e—ﬁ Zihi,i+1



MPDOs # Gibbs states

P MPDO can describe more than just Gibbs states.

PEPS
(2D pure states)

D-dimensional pure states «= (D — 1)-dimensional mixed states

P Boundary states of 2D topological order can be non-thermal MPDOs.

Boundary of toric code model
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Renormalization fixed-points of MPDO

P A MPDO is called a fixed-point MPDO if there is a pair of CPTP-maps S, T such that

T
) | ’ | |
M= ) 11 @ MY
iLj

ZS(Hﬂ'z) (jijz]) @ MMz = M, zT(H)(J'D ® MY = 2“11'2) (Jjoj2| @ M1t
L ij i

Theorem [Cirac, et al., ‘17] :
If p is a fixed-point MPDO, then p is a “global MPO” x a commuting Gibbs state.

Matrix Product Operator

o= B Xk P k+1 [Pi: Z Ry k+1
k

= [A g+ hisa] = 0.

Caveat: A notion of renormalization flow is missing for these “fixed-points”.



Exact (reversible) RG-flow of MPDO?

CPTP-map id, &

A

RG
gBﬂE
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for arbitrary large A

|B| < |B]

If |§| can chosen to be independent of | B|, then we obtain the desired RG-flow.



Exact compression of general bipartite states

» One-shot, exact compression of mixed bipartite state

PAaB D o E(PaB) = Pas

Question
What is the minimum dimension of H3?



Minimal sufficient subalgebra

The condition Dg_ 5 o E5_5(pag) = pag is equivalent to the following [Hayden, et al., ‘04]:

try(04p45)
tr(04p4)

Dpp°oEpp(Up) = g, Vugp €S, 8= {ﬂB = 0<04 = IA}-

» The minimal dimension of B is then derived from the minimum sufficient subalgebra of S.
[Petz, ‘86, ‘88][Jencova&Petz, ‘06]

Mz = Alg{ufpz™,u € S,t € R} € B(Hp)

This is a finite-dimensional C*-algebra, thus there is a decomposition

Hy = 69 Hoy ®@Hor st MS = 69 Mat (}[BL, cc) ® Iz

i i



Minimal sufficient subalgebra (cont.)

» For any bipartite state p,g € B(H, @ Hy),s.t., pg > 0,

H, = 69 Ko ®H e st M= 69 Mat (H 4z, C) ® Ir
[
Quantumly correlated
—
and Pap = 69 PiPypl @ WpgR -
i ‘ H

Classically correlated

Sometimes called “Koashi-Imoto decomposition”. [Koashi, Imoto, ‘02][Hayden, et al., ‘04]

» The minimal exact compression is then given by

EBoBiPAB 7 Pap = 69 Di PABl.L :
l




Exact (reversible) RG-flow of MPDO?

» We need to establish RG-flow (coarse-graining) for MPDOs

Unlike RG-flow for MPS (which is well-defined), one needs to reduce the entropy to keep the local
dimension to be a constant.
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This is exactly given by the Koa hi-ImJ?to decomposition!

v
PRA = @pl pRA%’ X C‘)Ali2
{




Diverging RG-flow

P We show not all MPDOs admit RG-flow. Consider an MPDO

1 A, 0 O
p\t) = op (198 + A% A=[0 2, o
0 0 2
A, B 1.4 trA =0, [|All <1,
_ ‘ It ‘ a A # Ay # As.
| | | | | | |

The minimal sufficient subalgebra for § = {,uB = tiiEgAzA)B) ‘O <0, < IA} is
AFA

M[%S — Alg{I®Z,A®l} ~ (Cpoly(l) I(E;(act R(IS—row must
iverge!



MPDO with a RG-flow

P We thus consider a subclass of MPDOs with a RG-flow.

Condition 1: there is a finite-dimensional C*-algebra A

A = (P Mat,, (©

J
a [ - independent constant dimension
and injective representations {m;} s.t. /
M = m,(A) = 69 Mat,, () ® [,  VB,IB| =L
a
a




The inclusion relation

Lemma: M3 ; < M5 Q@ My,
: : : — -1 -1
The inclusion ‘11+12:M§9182 S ]\/[g1 ®]\/[[§2 induces Al1+lz = (T[ll ® Tt'lz ) o ll1+lz o T[l1+lz

A A_> A Q) A
_— l l1+1, Y n[11®n_1

b4,

Mg132 “ Mgl ® Mgz



MPDO with a RG-flow (definition)

P We say a MPDO has a (1;, A) RG-flow if it satisfies the following two conditions.
Condition 1: ]\/[lg,S =m;(A), VB,|B| =L

Condition2: JA:A > AR A s.t. A4, =4, vi,, [, € N.

Proposition:
The linear map A: A = A @ A becomes a comultiplication, i.e., it satisfies

(AR A) oA = (AR id) oA =:A2



Pre-bialgebra behind RG-flows

In addition to comultiplication A: A = A @ A, we show that A has a counit €:
e:A->C st (Id®e)oA=(e®Qid) A =id.

Theorem:
The algebra A associated to (m;, A) is a pre-bialgebra.

pre-bialgebra = algebra A co-algebra with multiplicative coproduct: A(xy) = A(x)A(y).
Sketch of the proof:

counit of A < unit of LA™, the dual space (which becomes algebra by A)
i P(A") ”E}Uq) P: injective rep.

w
A M+~ M= Zli)(jl Q@ MU = z W @ |a}B| MY generates a unital algebra (by a property of
ij aB tensor network) = A" must contain a unit.



Structure theorem

Theorem: Any MPDO p € B ((Cd)®L) with a (mr;, A) RG-flow can be written as

p =1%o AL_l(W(L))Q(L), IwDe A4,

where [7®L o AL‘l(a),Q(L)] = (0,Va € A.

[ a0
(L) — A2 02
. _€9F1a1b1® 2azbz
c,a,b , . L Flc,albl
L—-2
QT 1aL1aL®kQakEB((C ) ﬁj
Ic .,Q,. >0
l,a,b’=%a; Qa, D, 00, Qa,



Structure theorem

Theorem: Any MPDO p € B ((Cd)®L) with a (mr;, A) RG-flow can be written as

0 wlbe 4,
n®L o AL71(a), QY] = 0,Va € A.
Recall that the structure thel #fixed-point is given as
Pfixedpoint Pi»z: hk,k+1] = |hgk+1, hisea] = 0.
k




Proof: KI decomposition and canonical form

e Each tensor has a canonical block form (up to a gauge transformation).
: : MY —» XMUX™1
Horizontal canonical form
M= )11 @ M
I —

Y i,
iy M = 69 'uleJ ~ 69 Mcll] X N, (Na)nn' = Oppiliy
| a

Proposition [Cirac et al., “17]: M is also in a canonical form in vertical direction

M=) W @ la)p

u KI-decomposition of MPDO

—|lM W“BEGBWW@Q
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Proof: KI decomposition and canonical form

Condition 1: ]\/[l_‘gg =m;(A), VB,|B| =1L

N |
T W“ﬁ[l]z<>nl (m111) @ 0.

MM ..M =:z W] @ |a){B]
ap

By definition and Condition 2, Omit the inclusion maps.

_ _ QL Al-1
Lll+lz o T[ll‘"lz = (T[ll ® 77,'[2) oA = T, = 7T1 o A .

WaB[l] = 69 7 o alt (95011]) ® 0.

a




Proof: KI decomposition and canonical form

Waﬁ[l] ~ 69 o Al-1 (Aaﬁ[l]) ® ‘le)_

a

Aw Hm |- m ] WLy + 1] = ) WY[L] @ WP 1]
| | | .

Y Y Consistency between decomposition (*) for LHS and RHS

4 L .
Lemma: %, Va, (1, (57 [L]) ® i, (@) [121) ) VY, = Bc T, [0, 1] ® 0

This lemma factorizes Q( ) into small pleces

b L
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Construction of exact RG-transformation

.| s | .
—| M M - — M | Waﬁ[l] 69 o Al-1 (A“,B[ ]) R Q(l)
| | \

[ - independent constant dimension
MM ..M = ZW“ﬁ ® |a){p]

51_>1l I Fis1 151, F151:CPTP-maps

— M - wWab ~ 9 tI‘.Q() new (Waﬁ) R Q(l)
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a
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MPO-algebra from A

We have seen An exact RG-flow = a pre-bialgebra A, an injective rep .

[A. Molnar, et al., 22]:
1®OL o AL=1(A) has an MPO-realization of algebra A.

VX € A,3b(X) € Mat,

7®L o AL1(X) = [ I I I B |J
powH H H H H H H




Application: MPO-symmetry
Let Z(A) be the center of A. For any z € Z(A), the MPDO p satisfies

[7®L 0 AL71(2), p] = ®L 0 AL71([2, wD] )W) = 0.

*Recall that [7®L o AL71(a), Q| = 0,Va € A.

[ L 1 1 11 1]
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Symmetry beyond group representation.

~

|
Ji

:
1
:

b(z)




Summary & Discussion

» Summary

* We have studied one-shot and exact data compression of mixed quantum source

e We have obtained a formula for the minimum achievable dimension

» Future direction

Many-boy physics

* Application to tensor-network states?

Quantum information
* How about one-shot approximate scenario?

* More sophisticated algorithm? Relation to entropic quantities?
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