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Tensor Networks

𝜓 = ෍

𝑖1,..,𝑖𝑁

𝑐𝑖1𝑖2…𝑖𝑁 |𝑖1… 𝑖𝑁⟩

𝑐𝑖1𝑖2…𝑖𝑁 =

Various applications in quantum physics

Gapped systems

Critical systems High-energy physics



Contraction rule

𝐴𝑎𝑏
𝑖 ∈ ℂ

𝐴

𝑖

𝑎 𝑏 𝑖 = 1,… , 𝑑
𝑎, 𝑏 = 1, … , 𝐷

𝐴

𝑖

𝑎

𝑗

𝐵

෍

𝑏=1

𝐷

𝐴𝑎𝑏
𝑖 𝐵𝑏

𝑗
∈ ℂ,

𝐵𝑐
𝑗
∈ ℂ

𝑖 = 1, … , 𝑑′
𝑐 = 1,… , 𝐷

𝑐

𝑗

𝐵

• Open leg = index of the tensor

• Connected leg = sum over the index

𝐴𝑖 ≔ 𝐴𝑎𝑏
𝑖 : matrix |𝐵𝑗⟩ ≔ 𝐵𝑐

𝑗
: vector

𝐴𝑖 𝐵𝑗 = ෍

𝑏=1

𝐷

𝐴𝑎𝑏
𝑖 𝐵𝑏

𝑗

vector



Matrix Product states

𝜓 = ෍

𝑖1,…,𝑖𝑁

𝑐𝑖1…𝑖𝑁 𝑖1𝑖2… 𝑖𝑁 ∈ ℂ𝑑
⊗𝑁

𝐴𝑖𝑘
(𝑗)
: 𝐷 × 𝐷 matrix (for each 𝑖𝑘 , 𝑗)

=

▶ The number of parameters needed to specify a MPS = 𝑑𝑁𝐷2 ≪ 𝑑𝑁

▶ Always satisfies an area law of entanglement: 𝑆 𝑋 𝜓 ≔ −Tr𝜌𝑋log𝜌𝑋 ≤ log𝐷

What are these states?

𝜓 = ෍

𝑖1,..,𝑖𝑁

Tr 𝐴𝑖1
(1)
𝐴𝑖2
(2)
…𝐴𝑖𝑁

(3)
|𝑖1…𝑖𝑁⟩MPS



MPS and 1D gapped physics

▶ 1D frustration-free, local, gapped Hamiltonian:

𝐻 =෍

𝑖

ℎ𝑖
ℎ𝑖

𝑁 < ∞ 𝑁 → ∞

Δ > 0

𝐸𝑁

GDS 𝑚0 < ∞𝐸𝑁
0

MPS ⊃ 1D local gapped frustration-free ground states
• Any 1D gapped ground state can be approximated by a MPS [Hastings, '07; Arad et al., '13]

𝐷 ∼ poly(𝑁, 1/𝜖)

MPS ⊂ 1D local gapped frustration-free ground states
• Any MPS has a 1D local, gapped Hamiltonian 𝐻 s.t. the MPS is a ground state of 𝐻

[Fannes, et al., '92; Nachtergaele, '96]

ℎ𝑖 𝜓𝐺𝑆 = 0, ∀𝑖.

local

frustration-free

gapped



Renormalization Group flow of MPS

ℂ𝑑
⊗2

▶MPS has a physically reversible coarse-graining operation.

𝐴

ℂ𝑑

ℂ𝐷
𝐴

ℂ𝐷
ℂ𝑑

ሚ𝐴

ℂ𝑑
ℂ𝐷ℂ𝐷

𝐴𝐴

ℂ𝑑
⊗2

=

Use the polar decomposition of tensor 𝐴𝐴 = 𝑉 ሚ𝐴 𝑑 > 𝐷2 𝑤. 𝑙. 𝑜. 𝑔. .

𝑉

=

▶ The RG-fixed point is achieved by iteration → Isometric MPS

▶ The RG-fixed point is useful to characterize quantum gapped phases [Schuch et al., ‘11]

𝐴
𝜔𝐷 𝜔𝐷

𝑉: ℂ𝐷
⊗2

→ ℂ𝑑 isometry
=



Matrix Product Density Operators (MPDO)

𝑀 𝑀 𝑀 𝑀 𝑀 𝑀 𝑀

𝑖𝑘

𝑗𝑘

𝜌𝑀𝑃𝐷𝑂 =෍

𝒊,𝒋

Tr 𝑀𝑖1𝑗1𝑀𝑖2𝑗2…𝑀𝑖𝑁𝑗𝑁 |𝑖1𝑖2… 𝑖𝑁⟩⟨𝑗1𝑗2…𝑗𝑁| 𝑀𝑖𝑘𝑗𝑘: 𝐷 × 𝐷 matrix (for each 𝑖𝑘 , 𝑗𝑘)

• A natural generalization of Matrix Product States to 1D mixed states.

• A good ansatz for thermal states and steady states in 1D systems.

▶ Any Gibbs states of 1D local Hamiltonian can be approximated by a MPDO [Hastings ‘06].

MPDO ⊇ 𝜌𝐺𝑖𝑏𝑏𝑠 =
1

𝑍
𝑒−𝛽 σ𝑖 ℎ𝑖,𝑖+1



MPDOs ≠ Gibbs states

𝜌𝜕𝑋

𝐷-dimensional pure states ⟷ (𝐷 − 1)-dimensional mixed states 

▶ MPDO can describe more than just Gibbs states.

PEPS
(2D pure states)

𝜌MPDO =
1

2𝑛
𝐼⊗𝑛 + 𝑍⊗𝑛 ≠

1

𝑍
𝑒−𝛽 σ𝑖 ℎ𝑖,𝑖+1

▶ Boundary states of 2D topological order can be non-thermal MPDOs.

Boundary of toric code model



Renormalization fixed-points of MPDO

𝑀

▶ A MPDO is called a fixed-point MPDO if there is a pair of CPTP-maps 𝒮, 𝒯 such that

𝑀 𝑀

𝒯

𝒮

Theorem [Cirac, et al., ‘17] : 
If 𝜌 is a fixed-point MPDO, then 𝜌 is a “global MPO” × a commuting Gibbs state. 

Caveat: A notion of renormalization flow is missing for these “fixed-points”.

𝑀 =෍

𝑖𝑗

𝑖 𝑗 ⊗𝑀𝑖𝑗

෍

𝑖𝑗

𝒯 𝑖 𝑗 ⊗𝑀𝑖𝑗 =෍

𝑖𝑗

𝑖1𝑖2 𝑗1𝑗2 ⊗𝑀𝑖1𝑗1𝑀𝑖2𝑗2෍

𝑖𝑗

𝒮( 𝑖1𝑖2 𝑗1𝑗2 ) ⊗𝑀𝑖1𝑗1𝑀𝑖2𝑗2 = 𝑀,

𝜌MPDO =ໄ

𝑖=1

𝑑

𝜆𝑖𝑃𝑖 𝑒
−𝛽 σ𝑘 ℎ𝑘,𝑘+1 𝑃𝑖 ,෍

𝑘

ℎ𝑘,𝑘+1 = ℎ𝑘,𝑘+1, ℎ𝑙,𝑙+1 = 0.

Matrix Product Operator



Exact (reversible) RG-flow of MPDO?

𝐴 𝐴𝐵

෨𝐵𝐴 𝐴

id𝐴⊗ℰ𝐵→ ෨𝐵
𝑅𝐺 ∃id𝐴⊗ 𝑅 ෨𝐵→𝐵

෨𝐵 < 𝐵

If ෩𝑩 can chosen to be independent of |𝑩|, then we obtain the desired RG-flow.

CPTP-map for arbitrary large 𝐴



Exact compression of general bipartite states

One-shot, exact compression of mixed bipartite state

𝒟 ∘ ℰ 𝜌𝐴𝐵 = 𝜌𝐴𝐵𝜌𝐴𝐵

ℰ𝐵→ ෨𝐵 𝒟 ෨𝐵→𝐵

𝑖𝑑 ෨𝐵𝐵

𝐴

𝐵

Question

What is the minimum dimension of 𝓗෩𝑩?



Minimal sufficient subalgebra

The minimal dimension of ෩𝐵 is then derived from the minimum sufficient subalgebra of 𝒮. 

The condition 𝒟෩𝐵→𝐵 ∘ ℰ𝐵→෩𝐵 𝜌𝐴𝐵 = 𝜌𝐴𝐵  is equivalent to the following [Hayden, et al., ‘04]:

𝒮 ≔ 𝜇𝐵 =
tr𝐴 𝑂𝐴𝜌𝐴𝐵
tr 𝑂𝐴𝜌𝐴

0 ≤ 𝑂𝐴 ≤ 𝐼𝐴 .𝒟 ෨𝐵→𝐵 ∘ ℰ𝐵→ ෨𝐵 𝜇𝐵 = 𝜇𝐵, ∀𝜇𝐵 ∈ 𝒮,

[Petz, ‘86, ‘88][Jenčová&Petz, ‘06]

ℳ𝐵
𝑆 ≔ Alg 𝜇𝐵

𝑖𝑡𝜌𝐵
−𝑖𝑡 , 𝜇 ∈ 𝒮, 𝑡 ∈ ℝ ⊂ ℬ ℋ𝐵

ℳ𝐵
𝑆 ≅ໄ

𝑖

Mat ℋ𝐵𝑖
𝐿 , ℂ ⊗ 𝐼𝐵𝑖

𝑅 .ℋ𝐵 ≅ໄ

𝑖

ℋ𝐵𝑖
𝐿 ⊗ℋ𝐵𝑖

𝑅

This is a finite-dimensional 𝐶∗-algebra, thus there is a decomposition

s.t.



Minimal sufficient subalgebra (cont.)

𝜌𝐴𝐵 =ໄ

𝑖

𝑝𝑖 𝜌𝐴𝐵𝑖
𝐿 ⊗𝜔𝐵𝑖

𝑅 .

Sometimes called “Koashi-Imoto decomposition”. [Koashi, Imoto, ‘02][Hayden, et al., ‘04]

►For any bipartite state 𝜌𝐴𝐵 ∈ ℬ ℋ𝐴 ⊗ℋ𝐵 , s.t., 𝜌𝐵 > 0,

and

Quantumly correlated

Classically correlated

ℳ𝐵
𝑆 ≅ໄ

𝑖

Mat ℋ𝐵𝑖
𝐿 , ℂ ⊗ 𝐼𝐵𝑖

𝑅ℋ𝐵 ≅ໄ

𝑖

ℋ𝐵𝑖
𝐿 ⊗ℋ𝐵𝑖

𝑅 s.t.

►The minimal exact compression is then given by

ℰ𝐵→ ෨𝐵: 𝜌𝐴𝐵 ↦ 𝜌𝐴 ෨𝐵 ≔ໄ

𝑖

𝑝𝑖 𝜌𝐴𝐵𝑖
𝐿 .



Exact (reversible) RG-flow of MPDO?

We need to establish RG-flow (coarse-graining) for MPDOs

Unlike RG-flow for MPS (which is well-defined), one needs to reduce the entropy to keep the local 
dimension to be a constant.

෩𝑀𝑀 𝑀
⊗

=
𝜎

𝑉

𝑉†

This is exactly given by the Koashi-Imoto decomposition!

𝜌𝑅𝐴 =ໄ

𝑖

𝑝𝑖 𝜌𝑅𝐴𝑖
𝐿 ⊗𝜔𝐴𝑖

𝑅



Diverging RG-flow

▶We show not all MPDOs admit RG-flow. Consider an MPDO 

𝜌(𝐿) ≔
1

3𝐿
𝐼⊗𝐿 + Λ⊗𝐿

𝐴 𝐴𝐵

Λ =

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

𝑙

The minimal sufficient subalgebra for 𝒮 ≔ 𝜇𝐵 =
tr𝐴 𝑂𝐴𝜌𝐴𝐵

tr 𝑂𝐴𝜌𝐴
0 ≤ 𝑂𝐴 ≤ 𝐼𝐴  is

ℳ𝐵
𝑆 = Alg 𝐼⊗𝑙 , Λ⊗𝑙 ≅ ℂpoly 𝑙

trΛ = 0, Λ ≤ 1,
𝜆1 ≠ 𝜆2 ≠ 𝜆3 .

Exact RG-flow must 
diverge!



MPDO with a RG-flow

▶We thus consider a subclass of MPDOs with a RG-flow.

Condition 1: there is a finite-dimensional 𝑪∗-algebra 𝒜

ℳ𝐵
𝒮 = 𝜋𝑙 𝒜 ≅ໄ

𝑎

Mat𝑑𝑎 ℂ ⊗ 𝐼
𝑑𝑎
(𝑙)

𝒜 =ໄ

𝑎

Mat𝑑𝑎 ℂ

and injective representations 𝝅𝒍  s.t.

∀𝐵, 𝐵 = 𝑙.

𝐴 𝐴𝐵

𝑙

𝑙 - independent constant dimension



The inclusion relation

𝐴 𝐴
𝐵1

𝑙1 𝑙2

𝐵2

Lemma: ℳ𝐵1𝐵2
𝒮 ⊂ℳ𝐵1

𝒮 ⊗ℳ𝐵2
𝒮 .

The inclusion 𝜄𝑙1+𝑙2:ℳ𝐵1𝐵2
𝒮 ℳ𝐵1

𝒮 ⊗ℳ𝐵2
𝒮 induces

𝒜 𝒜⊗𝒜

ℳ𝐵1𝐵2
𝒮 ℳ𝐵1

𝒮 ⊗ℳ𝐵2
𝒮

𝜋𝑙1+𝑙2 𝜋𝑙1
−1⊗𝜋𝑙2

−1

𝜄𝑙1+𝑙2

Δ𝑙1+𝑙2

Δ𝑙1+𝑙2 ≔ 𝜋𝑙1
−1⊗𝜋𝑙2

−1 ∘ 𝜄𝑙1+𝑙2 ∘ 𝜋𝑙1+𝑙2



MPDO with a RG-flow (definition)

∃Δ:𝒜 → 𝒜⊗𝒜

▶We say a MPDO has a 𝝅𝒍,𝓐 RG-flow if it satisfies the following two conditions.

ℳ𝐵
𝒮 = 𝜋𝑙 𝒜 ,Condition 1: ∀𝐵, 𝐵 = 𝑙.

Condition 2: Δl1+l2 = Δ, ∀𝑙1, 𝑙2 ∈ ℕ.s. t.

Proposition:
The linear map Δ:𝒜 → 𝒜⊗𝒜 becomes a comultiplication, i.e., it satisfies

id ⊗ Δ ∘ Δ = Δ⊗ id ∘ Δ =: Δ2.



Pre-bialgebra behind RG-flows

Theorem:
The algebra 𝒜 associated to 𝜋𝑙 , 𝒜 is a pre-bialgebra.

In addition to comultiplication Δ:𝒜 → 𝒜⊗𝒜, we show that 𝒜 has a counit 𝝐:

𝜖:𝒜 → ℂ, s.t. id ⊗ 𝜖 ∘ Δ = 𝜖 ⊗ id ∘ Δ = id.

pre-bialgebra = algebra ∧ co-algebra with multiplicative coproduct: Δ 𝑥𝑦 = Δ 𝑥 Δ 𝑦 .

Sketch of the proof:

counit of 𝒜 ⇔ unit of 𝒜∗, the dual space (which becomes algebra by Δ)

𝑀 𝑀 =෍

𝑖𝑗

𝑖 𝑗 ⊗𝑀𝑖𝑗 =෍

𝛼,𝛽

𝑊𝛼𝛽 ⊗ |𝛼⟩⟨𝛽|

𝑖

𝑗

𝜋 𝒜

∈

𝜓 𝒜∗

∈

𝜓: injective rep.

𝑀𝑖𝑗 generates a unital algebra (by a property of 
tensor network) → 𝒜∗ must contain a unit.



Structure theorem

Theorem: Any MPDO 𝜌 ∈ ℬ ℂ𝑑
⊗𝐿

 with a 𝜋𝑙 , 𝒜 RG-flow can be written as 

𝜌 = 𝜋⊗𝐿 ∘ Δ𝐿−1 𝑤 𝐿 Ω 𝐿 , ∃𝑤 𝐿 ∈ 𝒜,

where 𝜋⊗𝐿 ∘ Δ𝐿−1 𝑎 , Ω 𝐿 = 0, ∀𝑎 ∈ 𝒜.

Ω 𝐿 =ໄ

𝑐,𝒂,𝒃

Γ1,𝑎1,𝑏1
𝑐 ⊗Γ2,𝑎2,𝑏2

𝑏1

⋯⊗ Γ𝐿−1,𝑎𝐿−1,𝑎𝐿
𝑏𝐿−2 ۪𝑘

𝐿 Ω𝑎𝑘 ∈ ℬ ℂ𝑑
𝐿

Γ𝑙,𝑎,𝑏
𝑐 , Ω𝑎𝑖 ≥ 0

⋯

Ω𝑎1Ω𝑎2Ω𝑎𝐿 Ω𝑎𝐿−1

Γ1,𝑎1𝑏1
𝑐

Γ2,𝑎2𝑏2
𝑐



Structure theorem

Theorem: Any MPDO 𝜌 ∈ ℬ ℂ𝑑
⊗𝐿

 with a 𝜋𝑙 , 𝒜 RG-flow can be written as 

𝜌 = 𝜋⊗𝐿 ∘ Δ𝐿−1 𝑤 𝐿 Ω 𝐿 , ∃𝑤 𝐿 ∈ 𝒜,

𝜌fixedpoint =ໄ

𝑖=1

𝑑

𝜆𝑖𝑃𝑖 𝑒
−𝛽 σ𝑘 ℎ𝑘,𝑘+1 𝑃𝑖 ,෍

𝑘

ℎ𝑘,𝑘+1 = ℎ𝑘,𝑘+1, ℎ𝑙,𝑙+1 = 0.

Recall that the structure theorem on the fixed-point is given as

where 𝜋⊗𝐿 ∘ Δ𝐿−1 𝑎 , Ω 𝐿 = 0, ∀𝑎 ∈ 𝒜.



Proof: KI decomposition and canonical form

• Each tensor has a canonical block form (up to a gauge transformation).

𝑀 𝑀𝑖𝑗 =ໄ

𝑘

𝜇𝑘𝑀𝑘
𝑖𝑗
≅ໄ

𝑎

𝑀𝑎
𝑖𝑗
⊗𝑁𝑎

Horizontal canonical form

𝑁𝑎 𝜂𝜂′ ≔ 𝛿𝜂𝜂′𝜇𝜂

Proposition [Cirac et al., ‘17]: 𝑀 is also in a canonical form in vertical direction

𝑀 𝑊𝛼𝛽 ≅ໄ

𝑎

𝑊𝑎
𝛼𝛽

⊗Ω𝑎

KI-decomposition of MPDO

𝑀 =෍

𝑖𝑗

𝑖 𝑗 ⊗𝑀𝑖𝑗

𝑀 =෍

𝛼𝛽

𝑊𝛼𝛽 ⊗ 𝛼 𝛽

𝑀𝑖𝑗 ↦ 𝑋𝑀𝑖𝑗𝑋−1

𝜌𝐴𝐵 =ໄ

𝑖

𝑝𝑖 𝜌𝐴𝐵𝑖
𝐿 ⊗𝜔𝐵𝑖

𝑅 .



Proof: KI decomposition and canonical form

𝑀 𝑊𝛼𝛽[𝑙] ≅ໄ

𝑎

𝜋𝑙 ෝ𝑤𝑎
𝛼𝛽
[𝑙] ⊗ Ω𝑎

𝑙
.

𝑀𝑀…𝑀 =:෍

𝛼𝛽

𝑊𝛼𝛽[𝑙] ⊗ 𝛼 𝛽

ℳ𝐵
𝒮 = 𝜋𝑙 𝒜 ,Condition 1: ∀𝐵, 𝐵 = 𝑙.

𝑀 𝑀⋯

⇒ 𝜋𝑙 = 𝜋1
⊗𝑙 ∘ Δ𝑙−1.𝜄𝑙1+𝑙2 ∘ 𝜋𝑙1+𝑙2 = 𝜋𝑙1 ⊗𝜋𝑙2 ∘ Δ

By definition and Condition 2, Omit the inclusion maps.

𝑊𝛼𝛽[𝑙] ≅ໄ

𝑎

𝜋1
⊗𝑙 ∘ Δ𝑙−1 ෝ𝑤𝑎

𝛼𝛽
[𝑙] ⊗ Ω𝑎

𝑙
.



Proof: KI decomposition and canonical form

𝑀 𝑀 𝑀⋯

Lemma: σ𝛾 Vab 𝜋𝑙1 ෝ𝑤𝑎
𝛼𝛾

𝑙1 ⊗𝜋𝑙2 ෝ𝑤𝑏
𝛾𝛽

𝑙2 𝑉𝑎𝑏
† = ۩𝑐 Γ𝑎𝑏

𝑐 𝑙1, 𝑙2 ⊗Ω𝑙
𝑐

This lemma factorizes Ω𝑎
(𝑙)

 into small pieces.

𝑊𝛼𝛽[𝑙] ≅ໄ

𝑎

𝜋1
⊗𝑙 ∘ Δ𝑙−1 ෝ𝑤𝑎

𝛼𝛽
[𝑙] ⊗ Ω𝑎

𝑙
.

𝑊𝛼𝛽 𝑙1 + 𝑙2 =෍

𝛾

𝑊𝛼𝛾[𝑙1] ⊗𝑊𝛾𝛽 [𝑙2]

𝑙1 𝑙2

Consistency between decomposition (*) for LHS and RHS

Ω 𝐿 =ໄ

𝑐,𝒂,𝒃

Γ1,𝑎1,𝑏1
𝑐 ⊗Γ2,𝑎2,𝑏2

𝑏1 ⋯⊗ Γ𝐿−1,𝑎𝐿−1,𝑎𝐿
𝑏𝐿−2 ໆ

𝑘

𝐿

Ω𝑎𝑘 ∈ ℬ ℂ𝑑
𝐿



Construction of exact RG-transformation

𝑀 𝑀 𝑀⋯ 𝑊𝛼𝛽[𝑙] ≅ໄ

𝑎

𝜋1
⊗𝑙 ∘ Δ𝑙−1 ෝ𝑤𝑎

𝛼𝛽
[𝑙] ⊗ Ω𝑎

𝑙
.

𝑀𝑀…𝑀 =:෍

𝛼𝛽

𝑊𝛼𝛽[𝑙] ⊗ 𝛼 𝛽

෩𝑀 ෩𝑊𝛼𝛽 ≅ໄ

𝑎

trΩ𝑎
(𝑙)

trΩ𝑎
(1)
𝜋1
𝑛𝑒𝑤 ෥𝑤𝑎

𝛼𝛽
⊗Ω𝑎

1
.

𝜋1
𝑛𝑒𝑤 ෥𝑤𝑎

𝛼𝛽
≔ 𝜋1

⊗𝑙 ∘ Δ𝑙−1 ෝ𝑤𝑎
𝛼𝛽
[𝑙]

ℰ𝑙→1 ℱ1→𝑙

෩𝑀 =:෍

𝛼𝛽

෩𝑊𝛼𝛽 ⊗ 𝛼 𝛽

ℰ𝑙→1 , ℱ1→𝑙:CPTP-maps

𝑙 - independent constant dimension



MPO-algebra from 𝒜

We have seen An exact RG-flow ⇒ a pre-bialgebra 𝒜, an injective rep 𝜋.

[A. Molnar, et al., ‘22]:

𝜋⊗𝐿 ∘ Δ𝐿−1 𝒜 has an MPO-realization of algebra 𝒜. 

𝑏(𝑋)
𝜋⊗𝐿 ∘ Δ𝐿−1 𝑋 =

∀𝑋 ∈ 𝒜, ∃𝑏 𝑋 ∈ Mat𝐷,



Application: MPO-symmetry

Let 𝒵 𝒜 be the center of 𝒜. For any 𝑧 ∈ 𝒵 𝒜 , the MPDO 𝜌 satisfies 

𝜋⊗𝐿 ∘ Δ𝐿−1 𝑧 , 𝜌 = 𝜋⊗𝐿 ∘ Δ𝐿−1 𝑧, 𝑤 𝐿 Ω 𝐿 = 0.

*Recall that 𝜋⊗𝐿 ∘ Δ𝐿−1 𝑎 , Ω 𝐿 = 0, ∀𝑎 ∈ 𝒜.

=

𝑏(𝑧)

𝑏(𝑧)

Symmetry beyond group representation.



Summary & Discussion

• We have studied one-shot and exact data compression of mixed quantum source

• We have obtained a formula for the minimum achievable dimension 

Summary

Future direction

Many-boy physics

• Application to tensor-network states?

Quantum information

• How about one-shot approximate scenario? 

• More sophisticated algorithm? Relation to entropic quantities?
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