Higher Condensation Theory

Liang Kong

SIQSE, Southern University of Science and Technology, China

Shenzhen-Nagoya Workshop, September 18-21, 2024

References: joint with Zhi-Hao Zhang, Jia-Heng Zhao, Hao Zheng, arXiv:2403.07813 (upcoming 2nd version!)

Anyon condensations in 2+1D

The mathematical theory of anyon condensation has a long history Moore-Seiberg:1988-1989,

 $Bais-Slingerland: 2002-2008,\ Kapustin-Saulina: 1008.0654,\ Levin: 1301.7355,\ Barkeshli-Jian-Qi: 1305.7203,\ ...,\ Levin: 1301.7355,\ Barkeshli-Jian-Qi: 1305.7355,\ Barkeshli-Jian-Qi: 1305.7$

Böckenhauer-Evans-Kawahigashi:math/9904109,0002154, Kirillov-Ostrik:math/0101219,

Frölich-Fuchs-Runkel-Schweigert:math/0309465, K.:1307.8244, ...

The mathematical theory of anyon condensation has a long history Moore-Seiberg:1988-1989,

 $Bais-Slingerland: 2002-2008,\ Kapustin-Saulina: 1008.0654,\ Levin: 1301.7355,\ Barkeshli-Jian-Qi: 1305.7203,\ ...,\ Levin: 1301.7355,\ Barkeshli-Jian-Qi: 1305.7355,\ Barkeshli-Jian-Qi: 1305.7355,\ Barkeshli-Jian-Qi: 1305.7355,\ Barkeshli-Jian-Qi: 1305.$

 $B\"{o}cken hauer-Evans-Kawahigashi:math/9904109,0002154,\ Kirillov-Ostrik:math/0101219,$

Frölich-Fuchs-Runkel-Schweigert:math/0309465, K.:1307.8244, ...

Theorem

Let $\mathcal C$ and $\mathcal D$ be the modular tensor categories (MTC) of anyons in two 2+1D topological orders. An anyon (or boson) condensation from $\mathcal C$ to $\mathcal D$, which produces a gapped domain wall $\mathcal M$, is determined by a condensable E_2 -algebra A in $\mathcal C$.

- D is the category of deconfined particles = the category of local A-modules (or E₂-A-modules) in C; the trivial anyon 1_D ∈ D is A ∈ C;
 ⊗_D = ⊗_A.
- M is the category of (de)-confined particles = the category of right A-modules in C.
- bulk-to-wall maps: $\mathbb{C} \xrightarrow{-\otimes A} \mathfrak{M} \hookleftarrow \mathfrak{D}$

Contrary to the physical intuitions that a phase transition between two phases are reversible, above mathematical description of an anyon condensation is not reversible because we have Davydov-Müger-Nikshych-Ostrik:1009.2117.

$$\dim \mathfrak{D} = \frac{\dim \mathfrak{C}}{(\dim A)^2},$$

where $\dim A > 1$ for any non-trivial condensation.

Contrary to the physical intuitions that a phase transition between two phases are reversible, above mathematical description of an anyon condensation is not reversible because we have Davydov-Müger-Nikshych-Ostrik:1009.2117.

$$\dim \mathcal{D} = \frac{\dim \mathcal{C}}{(\dim A)^2},$$

where $\dim A > 1$ for any non-trivial condensation.

It turns out that this phenomenon is a reflection of the fact that the 1-category of anyons (i.e., defects of codimension 2) does not include all topological defects in a 2+1D topological order Kitaev-K.:1104.5047. In this talk, I will show that, by including all topological defects of codimension 1 and higher, we obtain a 2-category and a rather complete defect condensation theory, which is ready to be generalized to higher dimensions.

Category of topological defects

The mathematical theory of topological defects in an n + 1D (potentially anomalous) topological order was developed in a series of works based on three guiding principles.

- 1. Remote Detectable Principle, Levin:1301.7355, K.-Wen:1405.5858
- 2. Boundary-bulk relation, Kitaev-K.:1104.5047, K.-Wen-Zheng:1502.01690,1702.00673
- 3. Condensation Completion Principle. Carqueville-Runkel:1210.6363. Douglas-Reutter:1812.11933. Gaiotto, Johnson-Frevd:1905.09566. Johnson-Frevd:2003.06663. K.-Lan-Wen-Zhang-Zheng:2003.08898

Preceded by some earlier works K.-Wen:1405.5858, K.-Wen-Zheng:1502.01690, this theory was essentially established by Johnson-Freyd in 2020 Johnson-Freyd:2003.06663 and was further developed and generalized to all quantum liquids in K.-Zheng:2011.02859, 2107.03858.

2201.05726 .

We summarize the main results of this theory for an (potentially anomalous) n+1D topological order C^{n+1} .

- 1. The category of all topological defects (of codimension 1 and higher) form a fusion n-category \mathfrak{C} (an E_1 -fusion n-category). Johnson-Freyd:2003.06663
 - 1.1 0-morphisms (i.e., objects) in \mathcal{C} are 1-codimensional defects;
 - 1.2 1-morphisms in C are 2-codimensional defects;
 - 1.3 k-morphisms are (k + 1)-codimensional defects;
 - 1.4 *n*-morphisms are (n+1)-codimensional defects (i.e., instantons or 0D defects).
- 2. $1 \in \mathcal{C}$ labels the trivial 1-codimensional defect.
- 3. $\Omega \mathcal{C} := \text{hom}(\mathbb{1}, \mathbb{1})$ is the category of defects of codimension 2 and higher. It is braided fusion (n-1)-category or E_2 -fusion (n-1)-category.
- 4. Ω^{k-1} C is the category of defects of codimension k and higher. It is an E_k -fusion (n-k+1)-category. K.-Zheng:2011.02859

I will explain the meaning of ' E_1 ', ' E_2 ' and ' E_k '.

- 1. \mathcal{C} is \mathcal{E}_1 -fusion: two 1-codimensional defects $x, y \in \mathcal{C}$ can be fusion in one direction $x \otimes^1 y$.
- 2. $\Omega \mathcal{C}$ is E_2 -fusion: two 2-codimensional defects $a,b\in\Omega \mathcal{C}$ can be fused in two orthogonal directions:

3. $\Omega^{k-1}\mathcal{C}$ is E_k -fusion: two k-codimensional defects $p, q \in \Omega^{k-1}\mathcal{C}$ can be fused in k orthogonal directions: $p \otimes^1 q, p \otimes^2 q, \cdots, p \otimes^k q$.

Convention of notations:

- Topological orders: A^{n+1} , B^{n+1} , C^{n+1} , \cdots ;
- Category of all defects (codimension 1 or higher): A, B, C, \cdots ;
- Category of defects of codimension 2 or higher: $\Omega A, \Omega B, \Omega C, \cdots$;
- Category of defects of codimension k or higher: $\Omega^{k-1}\mathcal{A}, \Omega^{k-1}\mathcal{B}, \Omega^{k-1}\mathcal{C}, \cdots$

Convention of notations:

- Topological orders: $A^{n+1}, B^{n+1}, C^{n+1}, \cdots$;
- Category of all defects (codimension 1 or higher): A, B, C, \cdots ;
- Category of defects of codimension 2 or higher: $\Omega A, \Omega B, \Omega C, \cdots$;
- Category of defects of codimension k or higher: $\Omega^{k-1}\mathcal{A}, \Omega^{k-1}\mathcal{B}, \Omega^{k-1}\mathcal{C}, \cdots$

If \mathbb{C}^{n+1} is anomaly-free, then $\mathbb{C} = \Sigma \Omega \mathbb{C} = \mathrm{Kar}(\mathrm{B}\Omega \mathbb{C})$ (n=2 Carqueville-Runkel:1210.6363, Douglas-Reutter:1812.11933; $n \geq 2$ Gaiotto, Johnson-Freyd:1905.09566).

$$\mathrm{B}\Omega\mathrm{C}\simeq egin{pmatrix} \Omega\mathrm{C}=\mathsf{hom}(\mathbb{1},\mathbb{1}) \\ \mathbb{1} \end{pmatrix} \qquad \Sigma\mathrm{\Omega}\mathrm{C}=\mathrm{Kar}(\mathrm{B}\Omega\mathrm{C})= egin{pmatrix} \Omega\mathrm{C} & \Omega_{\mathrm{x}}\mathrm{C} \\ \mathbb{1} & \mathcal{N} \end{pmatrix}$$

Convention of notations:

- Topological orders: $A^{n+1}, B^{n+1}, C^{n+1}, \cdots$;
- Category of all defects (codimension 1 or higher): A, B, C, \cdots ;
- Category of defects of codimension 2 or higher: $\Omega A, \Omega B, \Omega C, \cdots$;
- Category of defects of codimension k or higher: $\Omega^{k-1}\mathcal{A}, \Omega^{k-1}\mathcal{B}, \Omega^{k-1}\mathcal{C}, \cdots$

If \mathbb{C}^{n+1} is anomaly-free, then $\mathbb{C}=\Sigma\Omega\mathbb{C}=\mathrm{Kar}(\mathrm{B}\Omega\mathbb{C})$ (n=2 Carqueville-Runkel:1210.6363, Douglas-Reutter:1812.11933; $n\geq 2$ Gaiotto, Johnson-Freyd:1905.09566).

$$\mathrm{B}\Omega\mathrm{C}\simeq igoplus_{\mathbb{I}}^{\Omega\mathrm{C}=\mathsf{hom}(\mathbb{I},\mathbb{I})} oldsymbol{\Sigma}\Omega\mathrm{C}=\mathrm{Kar}(\mathrm{B}\Omega\mathrm{C})= igoplus_{\mathbb{I}}^{\Omega\mathrm{C}} oldsymbol{\Sigma}_{\mathrm{Mop}}^{\Omega_{\mathrm{x}}\mathrm{C}}$$

Physically, $\mathcal{C}=\Sigma\Omega\mathcal{C}$ means that all 1-codimensional defects, which cannot be braided, can only be the condensation descendants of 2-codimensional defects, which can be braided and detectable by double braidings. K.-Wen:1405.5858.

2+1D \mathbb{Z}_2 topological order TC^3 : We denote the fusion 2-category of topological defects in TC^3 by \mathfrak{TC} . In this case, $\Omega\mathfrak{TC}$ has four simple objects (or anyons) 1, e, m, f:

$$e \otimes e \simeq m \otimes m \simeq f \otimes f \simeq 1, \qquad f \simeq e \otimes m \simeq m \otimes e.$$

Mathematically, ΩTC can be identified with the Drinfeld center $\mathfrak{Z}_1(\operatorname{Rep}(\mathbb{Z}_2))$ of $\operatorname{Rep}(\mathbb{Z}_2)$. The fusion 2-category TC consists of six simple objects (i.e. 1-codimensional topological defects) $\mathfrak{1}, \theta, \operatorname{ss}, \operatorname{sr}, \operatorname{rs}, \operatorname{rr}$. K.-Zhang:2205.05565 θ is the invertible domain wall realizing the e-m duality.

\otimes	1	θ	SS	sr	rs	rr
1	1	θ	SS	sr	rs	rr
θ	θ	1	rs	rr	SS	sr
SS	SS	sr	2ss	2sr	SS	sr
sr	sr	SS	SS	sr	2ss	2sr
rs	rs	rr	2rs	2rr	rs	rr
rr	rr	rs	rs	rr	2rs	2rr

2+1D Ising topological order Is³: We denote the fusion 2-category of topological defects in Is³ by $\Im s$. In this case, $\Omega \Im s = \{1, \psi, \sigma\}$ is the MTC of anyons.

It turns out that the only simple 1-codimensional topological defect in ls^3 is the trivial defect 1. Fuchs-Runkel-Schweigert:hep-th/0204148.

Theorem Gaiotto, Johnson-Freyd:1905.09566: We denote the category of defects of the trivial topological order $\mathbf{1}^{n+1}$ by $n\mathrm{Vec}$, which consists of only trivial k-dimensional defects $\mathbf{1}^k$ for $1 \leq k \leq n$ and their condensation descendants (i.e., defects that can be obtained from $\mathbf{1}^k$ via condensation).

- (1) $\mathbf{1}^{0+1}$: 0Vec = \mathbb{C} (i.e., trivial fusion 0-category);
- (2) $\mathbf{1}^{1+1}$: $1 \text{Vec} := \Sigma \mathbb{C} = \text{Kar}(B\mathbb{C}) = \{\mathbb{C}^{\oplus k}\}$ (i.e., trivial fusion 1-category);

$$\mathbb{1}=\mathbf{1}^1,$$

(3) $\mathbf{1}^{2+1}$: $2\text{Vec} = \Sigma \text{Vec} = \text{Kar}(B\text{Vec}) = \{\text{Vec}^{\oplus k}\}\ \text{(i.e., trivial fusion 2-category)};$

$$\mathbb{1} = \mathbf{1}^2,$$
 $\bigvee_{\mathbb{1}}^{\text{Vec}}$

(4) $\mathbf{1}^{n+1}$: $n\text{Vec} = \Sigma(n-1)\text{Vec} = \Sigma^n \mathbb{C} \neq \{(n-1)\text{Vec}^{\oplus k}\}$ for $n \geq 3$. For example, $3\text{Vec} = \{2\text{Vec}^{\oplus k}, \Sigma \mathcal{A} | \mathcal{A} \text{ is a multi-fusion 1-category}\} = \{\text{separable 2-categories}\}.$

 $\mathbb{1}=\mathbf{1}^n$ A non-chiral topological order \mathbb{B}^n (i.e., admits a gapped boundary) is a condensation descendant of $\mathbb{1}=\mathbf{1}^n$

Remark: The physical meaning of the (n-1)-category $\mathfrak M$ is the category of gapped boundary conditions of B^n .

Definition (K.-Zheng:2011.02859)

It turns out that the functor $\hom_{(n+1)\mathrm{Vec}}(\bullet,-):(n+1)\mathrm{Vec}\to \mathrm{Cat}_n^{\mathbb{C}}$ is fully faithful. We call an object (i.e., a \mathbb{C} -linear n-category) in the image of this functor a *separable n-category*. As a consequence, $(n+1)\mathrm{Vec}=\$ep_n$, where $\$ep_n$ denotes the category of separable n-categories.

Definition (K.-Zheng:2011.02859)

An E_m -multi-fusion n-category $\mathcal A$ is a condensation-complete $\mathbb C$ -linear E_m -monoidal n-category such that $\Sigma^m \mathcal A$ is a separable (n+m)-category, i.e., $\Sigma^m \mathcal A \in (n+m+1) \mathrm{Vec}$. If $\mathbb 1_{\mathcal A}$ is simple, $\mathcal A$ is an E_m -fusion n-category.

Condensations of topological defects

Theorem (K.-Zhang-Zheng-Zhao:2403.07813): Condensing a k-codimensional topological defect A in an n+1D (potentially anomalous) topological order C^{n+1} amounts to a k-step process.

(1) The k-codimensional defect $A \in \Omega^{k-1} \mathcal{C}$ is condensable if it is equipped with the structure of a condensable E_k -algebra, i.e. an algebra equipped with compatible multiplications in k independent directions.

We first condense A along one of the transversal directions x^k , thus obtaining a (k-1)-codimensional defect $\Sigma A := \mathsf{RMod}_A(\Omega^{k-1}\mathcal{C}) \in \Sigma\Omega\mathcal{C}$.

(2) It turns out that ΣA is naturally equipped with the structure of a condensable E_{k-1} -algebra, thus it can be further condensed along one of the remaining transversal direction x^{k-1} , thus obtaining a (k-2)-codimensional defect $\Sigma^2 A := \operatorname{RMod}_{\Sigma A}(\Omega^{k-2}\mathfrak{C})$.

(3) In the k-th step, condensing the 1-codimensional defect $\Sigma^{k-1}A$ along the only transversal direction defines a phase transition to a new n+1D topological order D^{n+1} , which is Morita equivalent to C^{n+1} , and a gapped domain wall M^n .

$$\begin{split} \mathsf{Z}(\mathsf{C})^{n+2} &= \mathsf{Z}(\mathsf{D})^{n+2} \\ \mathsf{C}^{n+1} & \mathsf{M}^n & \mathsf{D}^{n+1} \end{split} \qquad \mathcal{D} \simeq \mathsf{Mod}^{\mathrm{E}_1}_{\Sigma^{k-1}\mathcal{A}}(\mathcal{C}) = \mathsf{BMod}_{\Sigma^{k-1}\mathcal{A}|\Sigma^{k-1}\mathcal{A}}(\mathcal{C}) \\ (\mathcal{M}, m) &= (\Sigma^k \mathcal{A} := \mathsf{RMod}_{\Sigma^{k-1}\mathcal{A}}(\mathcal{C}), \Sigma^{k-1}\mathcal{A}). \end{split}$$

(4) A k-codimensional deconfined topological defects in \mathbb{D}^{n+1} form the category $\Omega^{k-1}\mathbb{D}$, which can be computed directly as the category of \mathbb{E}_k -A-modules.

$$\Omega^{k-1}\mathcal{D} = \Omega^{k-1}\operatorname{\mathsf{Mod}}^{\operatorname{E}_1}_{\boldsymbol{\Sigma}^{k-1}\boldsymbol{A}}(\mathfrak{C}) \simeq \operatorname{\mathsf{Mod}}^{\operatorname{E}_k}_{\boldsymbol{A}}(\Omega^{k-1}\mathfrak{C}),$$

A k-codimensional topological defect is deconfined iff it is equipped with a 'k-dimensional A-action', which defines the mathematical notion called an E_k -module over A or an E_k -A-module.

(5) Similarly, the confined k-codimensional defects (confined to the wall M^n) can also be computed directly.

$$\Omega_m^{k-1}\mathcal{M}=\Omega^{k-1}\Sigma^kA=\Omega^{k-1}\operatorname{\mathsf{RMod}}_{\Sigma^{k-1}A}(\mathfrak{C})\simeq\operatorname{\mathsf{RMod}}_A(\Omega^{k-1}\mathfrak{C}).$$

(6) When C^{n+1} is anomaly-free (i.e., $C = \Sigma \Omega C$), the same phase transition, as a k-step process, can be alternatively defined by replacing the last two steps by a single step of condensing the E_2 -algebra $\Sigma^{k-2}A$ in the remaining two transversal directions directly.

The condensed phase D^{n+1} is determined by the category of E_2 -modules over $\Sigma^{k-2}A$.

$$\Omega \mathcal{D} \simeq \mathsf{Mod}^{\mathrm{E}_2}_{\Sigma^{k-2}A}(\Omega \mathfrak{C}), \qquad \mathcal{D} \simeq \Sigma \Omega \mathcal{D}, \qquad \Omega_m \mathfrak{M} = \mathsf{RMod}_{\Sigma^{k-2}A}(\Omega \mathfrak{C}).$$

When n=2, this modified last step is precisely a usual anyon condensation in 2+1D.

(7) The condensable E_k -algebra A is called Lagrangian if $D^{n+1} = \mathbf{1}^{n+1}$.

Example: Consider $2+1D \mathbb{Z}_2$ topological order TC^3 .

1. $A_e=1\oplus e$ is a Lagrangian E_2 -algebra in $\Omega T\mathcal{C}$. Condensing it along a line produces a string $\Sigma A_e=\mathrm{rr}$, which can be further condensed to create the rough boundary of TC^3 .

2. $A_m = 1 \oplus m$ is a Lagrangian E_2 -algebra in ΩTC . Condensing it along a line produces a string $\Sigma A_m = ss$, which can be further condensed to create the smooth boundary of TC^3 .

Examples: $C^{n+1} = \mathbf{1}^{n+1}$. In this case, the category of all defects C = n Vec (an E_1 -fusion *n*-category).

A condensable E_1 -algebra A in nVec is precisely a multi-fusion (n-1)-category. By condensing \mathcal{A} in nVec, we obtain the condensed phase D^{n+1} and a gapped domain wall M^n .

 \mathbf{D}^{n+1} is a non-chiral topological order (i.e., admitting a gapped boundary) and a condensation descendant of $\mathbf{1}^{n+1}$

$$\mathcal{D} \simeq \mathsf{BMod}_{\mathcal{A}|\mathcal{A}}(n\mathrm{Vec}), \qquad \mathsf{M}^n = (\mathcal{M}, m) = (\mathsf{RMod}_{\mathcal{A}}(n\mathrm{Vec}), \mathcal{A})$$

$$\Omega \mathcal{D} = \mathsf{Fun}_{\mathcal{A}|\mathcal{A}}(\mathcal{A}, \mathcal{A}) = \mathfrak{Z}_1(\mathcal{A}), \qquad \Omega_m \mathcal{M} = \mathcal{A}$$

If $\mathfrak{Z}_1(\mathcal{A}) = (n-1)\text{Vec}$, then $\mathfrak{D} = \Sigma\Omega\mathfrak{D} = \Sigma(n-1)\text{Vec} = n\text{Vec}$ (i.e., $\mathsf{D}^{n+1} = \mathbf{1}^{n+1}$). It means that a multi-fusion (n-1)-category \mathcal{A} is Lagrangian iff $\mathfrak{Z}_1(\mathcal{A})=(n-1)\mathrm{Vec}$.

4 Since $C^{n+1} = \mathbf{1}^{n+1}$ is anomaly-free, we can also condense a defect of codimension 2 directly. The category of 2-codimensional defects in $\mathbf{1}^{n+1}$ is $(n-1)\mathrm{Vec}$. A condensable E_2 -algebra in (n-1)Vec is precisely a braided fusion (n-2)-category \mathcal{B} . By condensing \mathcal{B} directly along remaining two transversal directions, we obtain D^{n+1} and a gapped domain wall M^n .

$$\Omega_m \mathcal{M}$$
 $\Omega \mathcal{C} = (n-1) \mathrm{Vec}$ $\Omega \mathcal{D}$

 $\Omega \mathcal{C} = (n-1) \mathrm{Vec}$ $\Omega \mathcal{D}$ $\Omega \mathcal{D}$ Double Distribution of $\Omega \mathcal{D}$ Double Distribution

$$\Omega \mathcal{D} = \mathsf{Mod}_{\mathcal{B}}^{\mathrm{E}_2}((n-1)\mathrm{Vec}), \qquad \mathcal{D} = \Sigma \Omega \mathcal{D} \simeq \Sigma \, \mathsf{Mod}_{\mathcal{B}}^{\mathrm{E}_2}((n-1)\mathrm{Vec}) \simeq \mathsf{Mod}_{\Sigma \mathcal{B}}^{\mathrm{E}_1}(n\mathrm{Vec}), \ \Omega_m \mathcal{M} = \mathsf{RMod}_{\mathcal{B}}((n-1)\mathrm{Vec}) = \Sigma \mathcal{B}, \qquad \mathcal{M} = \Sigma \Omega_m \mathcal{M}.$$

4 Since $C^{n+1} = \mathbf{1}^{n+1}$ is anomaly-free, we can also condense a defect of codimension 2 directly. The category of 2-codimensional defects in $\mathbf{1}^{n+1}$ is $(n-1)\mathrm{Vec}$. A condensable E_2 -algebra in (n-1)Vec is precisely a braided fusion (n-2)-category \mathcal{B} . By condensing \mathcal{B} directly along remaining two transversal directions, we obtain D^{n+1} and a gapped domain wall M^n .

and a condensation descendant of $\mathbf{1}^{n+1}$

$$\Omega \mathcal{D} = \mathsf{Mod}_{\mathcal{B}}^{\mathrm{E}_2}((n-1)\mathrm{Vec}), \qquad \mathcal{D} = \Sigma \Omega \mathcal{D} \simeq \Sigma \, \mathsf{Mod}_{\mathcal{B}}^{\mathrm{E}_2}((n-1)\mathrm{Vec}) \simeq \mathsf{Mod}_{\Sigma \mathcal{B}}^{\mathrm{E}_1}(n\mathrm{Vec}), \ \Omega_m \mathcal{M} = \mathsf{RMod}_{\mathcal{B}}((n-1)\mathrm{Vec}) = \Sigma \mathcal{B}, \qquad \mathcal{M} = \Sigma \Omega_m \mathcal{M}.$$

When n=3, every fusion 2-category is Morita equivalent to ΣA for a braided fusion 1-category A. Décoppet: 2208.08722 It means that all non-chiral 3+1D topological orders can be obtained from 1^4 by condensing defects of codimension 2 (i.e., strings).

When $\mathbb{C}^{n+1} = \mathbb{D}^{n+1} = \mathbf{1}^{3+1}$, the category of strings is $\Omega \mathbb{C} = 2 \text{Vec}$. The gapped domain wall M^3 is precisely a 2+1 D anomaly-free topological order, which can described by a pair (\mathfrak{B}, c) for a modular tensor category \mathfrak{B} .

By rolling up the 2+1D anomaly-free topological order M³, we obtain a string-like defect in $\mathbf{1}^4$, which is precisely the object $\mathcal{B} \in \Omega\mathbb{C} = 2\mathrm{Vec}$. By condensing this string, we obtain $\Omega\mathcal{D} = \mathsf{Mod}^{E_2}_{\mathcal{B}}(2\mathrm{Vec}) \simeq \Omega\,\mathsf{Mod}^{E_1}_{\Sigma\mathcal{B}}(3\mathrm{Vec}) \simeq \Omega 3\mathrm{Vec} = 2\mathrm{Vec}$. Therefore, $\mathcal{D}^4 = \mathbf{1}^4$ and \mathcal{B} is a Lagrangian E_2 -algebra in $2\mathrm{Vec}$.

(3). C^{n+1} is anomaly-free, i.e. $\mathfrak{Z}_1(\mathcal{C}) = n \text{Vec}$. In this case, we have

$$\mathcal{C} = \Sigma \Omega \mathcal{C} = \mathsf{RMod}_{\Omega \mathcal{C}}(n \mathrm{Vec})$$

provides a concrete coordinate system to the non-degenerate fusion n-category \mathcal{C} .

Theorem (Brochier-Jordan-Synder:1804.07538, K.-Zhang-Zhao-Zheng:2403.07813)

An indecomposable condensable E_1 -algebra in $\mathbb C$ are precisely an indcomposable multi-fusion (n-1)-category $\mathcal A$ equipped with a central functor $L:\Omega\mathbb C\to\mathcal A$ (i.e., a braided monoidal functor $\phi:\Omega\mathbb C\to\mathfrak Z_1(\mathcal A)$). When $\phi:\Omega\mathbb C\to\mathfrak Z_1(\mathcal A)$ is a braided equivalence, the condensable E_1 -algebra $\mathcal A$ is Lagrangian in the sense that $\mathsf D^{n+1}=\mathbf 1^{n+1}$.

Condensing A in C produces a condensed phase D^{n+1} and a gapped domain wall M^n :

$$\mathcal{D} \simeq \mathsf{Mod}_{\mathcal{A}}^{\mathrm{E}_1}(\mathcal{C}), \qquad \mathcal{M} \simeq \mathsf{RMod}_{\mathcal{A}}(\mathcal{C}) \simeq \mathsf{RMod}_{\mathcal{A}}(\mathit{n}\mathrm{Vec}), \qquad \mathit{m} = \mathcal{A},$$

Question: Does the abstract data of $L: \Omega \mathcal{C} \to \mathcal{A}$, which defines an abstract algebra, has a direct physical meaning?

Physical Meaning of this Theorem:

$$egin{aligned} \mathcal{M} &\simeq \mathsf{RMod}_{\mathcal{A}}(\mathcal{C}) \simeq \mathsf{RMod}_{\mathcal{A}}(\mathit{n}\mathrm{Vec}), \\ m &= \mathcal{A}, \\ \Omega_{\mathit{m}}\mathcal{M} &= \mathsf{RMod}_{\mathcal{A}}(\mathcal{A},\mathcal{A}) \simeq \mathcal{A}. \end{aligned}$$

Take home message: The multi-fusion higher category $\Omega_m \mathcal{M}$ (of all defects on the domain wall M^n) is a condensable E_1 -algebra in \mathcal{C} .

Example: $C^3 = TC^3$: The topological defects in TC^3 form the fusion 2-category

$$\mathfrak{TC} \simeq \Sigma(\Omega \mathfrak{TC}) = \mathsf{RMod}_{\mathfrak{Z}_1(\mathrm{Rep}(\mathbb{Z}_2))}(2\mathrm{Vec}).$$

A condensable E_1 -algebra in \mathcal{TC} are precisely a mulit-fusion categories \mathcal{A} equipped with a central functor $\mathfrak{Z}_1(\operatorname{Rep}(\mathbb{Z}_2)) \to \mathcal{A}$.

- 1. $\mathfrak{Z}_1(\operatorname{Rep}(\mathbb{Z}_2)) \xrightarrow{\operatorname{id}} \mathfrak{Z}_1(\operatorname{Rep}(\mathbb{Z}_2))$ defines a condensable E_1 -algebra $\mathfrak{Z}_1(\operatorname{Rep}(\mathbb{Z}_2))$. It is just the trivial condensable E_1 -algebra, i.e., tensor unit $\mathbb{1}$ of \mathcal{TC} .
- 2. $f: \mathfrak{Z}_1(\operatorname{Rep}(\mathbb{Z}_2)) \to \operatorname{Rep}(\mathbb{Z}_2)$ defines a condensable E_1 -algebra $\operatorname{Rep}(\mathbb{Z}_2)^{\operatorname{op}} = \operatorname{Rep}(\mathbb{Z}_2)$ in \mathfrak{TC} , which is precisely the 1-codimensional defect ss in \mathfrak{TC} .

$$\mathsf{Mod}^{\mathrm{E}_1}_{\mathrm{Rep}(\mathbb{Z}_2)}(\mathfrak{IC}) \simeq 2\mathrm{Vec},$$

Since the condensed phase is trivial, ss is a Lagrangian condensable E_1 -algebra in \mathfrak{TC} .

3 $\mathfrak{Z}_1(\operatorname{Rep}(\mathbb{Z}_2)) \xrightarrow{\simeq} \mathfrak{Z}_1(\operatorname{Vec}_{\mathbb{Z}_2}) \to \operatorname{Vec}_{\mathbb{Z}_2}$ defines a condensable E_1 -algebra $\operatorname{Vec}_{\mathbb{Z}_2}^{\operatorname{op}} = \operatorname{Vec}_{\mathbb{Z}_2}$, which is precisely the 1-codimensional defect rr in \mathfrak{TC} . We have

$$\mathsf{Mod}^{\mathrm{E}_1}_{\mathrm{Vec}_{\mathbb{Z}_2}}(\Sigma \mathfrak{Z}_1(\mathrm{Rep}(\mathbb{Z}_2))) \simeq 2 \mathrm{Vec}, \qquad \qquad \mathsf{TC}^3 \qquad \qquad \mathsf{TC}^3$$

Since the condensed phase is trivial, rr is a Lagrangian condensable E_1 -algebra in \mathfrak{TC} .

4 Consider double Ising 2+1D topological order ($\Omega \Im s$ is the Ising MTC).

$$A := \mathbb{1} \boxtimes \mathbb{1} \oplus \psi \boxtimes \psi \in \Omega \mathfrak{I} s \boxtimes \Omega \mathfrak{I} s^{\mathrm{op}} \simeq \mathfrak{Z}_1(\Omega \mathfrak{I} s) \tag{1}$$

has a condensable E_2 -algebra in $\mathfrak{J}_1(\Omega \mathfrak{I} s)$. Then the central functor $\{1,e,m,f\}=\Omega \mathfrak{T} \mathfrak{C}=\mathsf{Mod}_A^{E_2}(\mathfrak{J}_1(\Omega \mathfrak{I} s))\hookrightarrow \mathsf{RMod}_A(\mathfrak{J}_1(\Omega \mathfrak{I} s))^\mathrm{op}=\{1,e,m,f,\chi_\pm\}=\mathfrak{K}$ Chen-Jian-K.-You-Zheng:1903.12334 defines a condensable E_1 -algebra in $\mathfrak{T} \mathfrak{C}$. Condensing it in $\mathfrak{T} \mathfrak{C}$ produces the 2+1D double Ising topological order as the condensed phase.

$$\mathsf{Mod}^{\mathrm{E}_1}_{\mathcal{K}}(\mathfrak{TC}) \simeq \mathfrak{I} s \boxtimes \mathfrak{I} s^{\mathrm{op}}.$$

Liang Kong

A higher dimensional example: Consider the n+2D G-gauge theory GT_G^{n+2} . The category of 2-codimensional defects in GT_G^{n+2} was conjectured in K.-Tian-Zhou:1905.04644 to be:

$$\Omega \mathfrak{GT}_G^{n+2} = \mathfrak{Z}_1(n \operatorname{Rep}(G)) \simeq \mathfrak{Z}_1(n \operatorname{Vec}_G) \simeq \oplus_{[h] \in \operatorname{Cl}} n \operatorname{Rep}(C_G(h))$$

The fusion (n+1)-category \mathfrak{GT}_G^{n+2} has two coordinate systems:

$$\mathfrak{GT}_G^{n+2} = \mathsf{RMod}_{\mathfrak{Z}_1(n\mathrm{Rep}(G))}((n+1)\mathrm{Vec}), \qquad \mathfrak{GT}_G^{n+2} = \mathsf{BMod}_{n\mathrm{Rep}(G)|n\mathrm{Rep}(G)}((n+1)\mathrm{Vec})^{\mathrm{op}},$$

We have $\Omega\mathfrak{GT}_G^{n+2}=\mathfrak{Z}_1(n\mathrm{Rep}(G))$ and

$$\Omega^k \mathfrak{GT}_G^{n+2} = (n-k+1)\operatorname{Rep}(G)$$
 for $k \ge 2$

When k = n, $\Omega^n \mathfrak{GT}_G^{n+2} = \operatorname{Rep}(G)$ is the 1-category of particles.

Let H < G be a subgroup of G. The composite particle

$$A = \operatorname{Fun}(G/H)$$
 (i.e., \mathbb{C} -valued functions on G/H)

is an E_{n+1} -algebra in $\Omega^n \mathfrak{GT}_G^{n+2} = \operatorname{Rep}(G)$. By condensing the A-particles, we mean the following procedures.

(1) We first condensing the A-particle along a line, we obtain a string

$$\Sigma A = \operatorname{\mathsf{RMod}}_A(\operatorname{Rep}(G)) \simeq \operatorname{\mathsf{Rep}}(H) \in 2\operatorname{\mathsf{Rep}}(G) = \Omega^{n-1}\mathfrak{G}\mathfrak{T}_G^{n+2}.$$

(2) We further condense the ΣA -string along one of the remaining transversal directions, we obtain a membrane:

$$\Sigma^2 A = \mathsf{RMod}_{\Sigma A}(2\mathrm{Rep}(G)) \simeq \mathsf{RMod}_{\Sigma A}(2\mathrm{Vec}) \simeq 2\mathrm{Rep}(H) \in 3\mathit{Rep}(G) = \Omega^{n-2}\mathfrak{GT}_G^{n+2}.$$

(3)

$$\Sigma^{n-1}A = (n-1)\operatorname{Rep}(H) \in n\operatorname{Rep}(G) \hookrightarrow \mathfrak{Z}_1(n\operatorname{Rep}(G)).$$

$$\Sigma^n A = \operatorname{\mathsf{RMod}}_{\Sigma^{n-1}A}(\mathfrak{Z}_1(n\operatorname{Rep}(G))) \in \Sigma\mathfrak{Z}_1(n\operatorname{Rep}(G)).$$

Translate $\Sigma^n A$ into an E_1 -algebra in the second coordinate system of \mathfrak{GT}_G^{n+2} . It is defined by the following monoidal functor:

$$n\operatorname{Rep}(G) \to n\operatorname{Rep}(G) \boxtimes_{\mathfrak{Z}_1(n\operatorname{Rep}(G))} \operatorname{\mathsf{RMod}}_{\Sigma^{n-1}A}(\mathfrak{Z}_1(n\operatorname{Rep}(G)))$$

 $\simeq \operatorname{\mathsf{RMod}}_{\Sigma^{n-1}A}(n\operatorname{Rep}(G)) \simeq n\operatorname{Rep}(H).$

(4) By condensing $\Sigma^n A = n \text{Rep}(H)$, we obtain $D^{n+2} = GT_H^{n+2}$ as the condensed phase:

$$\mathcal{D} \simeq \mathsf{Mod}^{\mathrm{E}_1}_{n\mathrm{Rep}(H)^{\mathrm{op}}}(\mathfrak{GT}^{n+2}_G) \simeq \mathsf{Mod}^{\mathrm{E}_1}_{n\mathrm{Rep}(H)^{\mathrm{op}}}((n+1)\mathrm{Vec}) \simeq \mathfrak{GT}^{n+2}_H.$$

As a consequence, we provides the precise mathematical theory behind the folklore that breaking the G-gauge "symmetry" in GT_G^{n+2} to a subgroup H gives the H-gauge theory GT_H^{n+2} .

Conclusion and outlooks

- 1. One can see that the theory of defect condensation is precisely a mathematical theory of higher representations of higher algebras or higher Morita theories. There will be a mathematical companion of this paper, in which we develop a mathematical theory of condensable E_k -algebras.
- 2. It is possible to developed a mathematical theory of condensations of gapless but liquid-like defects based on the theory of gapped/gapless quantum liquids K.-Zheng:1705.01087,1905.04924,1912.01760,2011.02859, which is a prehistorical theory of SymTO/SymTFT based on the so-called 'topological Wick rotation'.
- 3. Although a new paradigm is emerging, as far as I can tell, it is still far from being complete. A complete paradigm demands an entirely new calculus, in which we are still in the beginning stage to understand integers. It means that there are a lot of exciting problems to work on in the coming future.

Thank you!