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Classical Distributed Computing

✓ network G = (V,E) of n nodes (all nodes have distinct identifiers)

✓ each node initially knows nothing about the topology of the graph

✓ synchronous communication between adjacent nodes:         

Complexity: the number of rounds used

one message through each edge per round (in each direction) 
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Example of Classical Distributed Algorithm: Computing Distances

2 hops
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Distance from node 1 = ?
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Round 1

at the end of Round 1: each node updates its distance

dist = 1
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Round 2

at the end of Round 2: each node updates its distance

(nodes that received a message for the first time at Round 2 set “dist = 2”)

dist = 2
dist = 2

Node 1 sends a message to its neighbors

nodes tell new knowledge to neighbors

Distance from node 1 = 2

(nodes that received a message at Round 1 set “dist = 1”)

Example of Classical Distributed Algorithm: Computing Distances



✓ network G = (V,E) of n nodes (all nodes have distinct identifiers)

✓ each node initially knows initially knows nothing about the topology of the graph

✓ synchronous communication between adjacent nodes:         

Complexity: the number of rounds used
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one message through each edge per round (in each direction) 

what size?

CONGEST model: only 1 bit per message 

LOCAL model: no restriction on the size of each message

motivation: communication 
is fast/cheap

Classical Distributed Computing



Now qubits can be sent instead of bits

Quantum distributed computing
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(no prior entanglement between nodes)

CONGEST model: only 1 qubit per message 

LOCAL model: no restriction on the size of each quantum message

Quantum Distributed Computing

✓ related to (quantum) communication complexity 

✓ several known examples of quantum advantage (polynomial speedups) obtained recently

✓ very few results



LOCAL Model: Classical (Deterministic) Algorithms
Typically, we consider a bounded-degree graph, nodes do not receive any input (except their IDs), 

and we want to solve a problem related of the whole graph (e.g., compute a graph coloring) 
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LOCAL Model: Classical (Deterministic) Algorithms
Typically, we consider a bounded-degree graph, nodes do not receive any input (except their IDs), 

and we want to solve a problem related of the whole graph (e.g., compute a graph coloring) 

This is the optimal strategy: without loss of generality, we can assume that in an r-round algorithm, the 

nodes learns its r-hop neighborhood and then compute their output locally



LOCAL Model: Classical (Deterministic) Algorithms

number of communication rounds 

=

how far do you need to see

tight bounds can be obtained on the 

classical complexity of many problems 



Basic Problem: 3-Coloring on Rings

Any ring has a 3-coloring (i.e., a node-coloring where neighbors have distinct colors)
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In the deterministic LOCAL model, a 3-coloring of a ring can be 

computed in Θ(log*n) rounds [Cole and Vishkin 1986] [Linial 1992]

n: number of nodes

if n is even then there exists a 2-coloring, but computing it 

requires Θ(n) rounds 

Remark:

log*n: number of times the log function must be iteratively 
applied before the result is less than or equal to 1

(example: log*(265536) = 5)



LOCAL Model: Quantum Algorithms

1 quantum message (unbounded length) between adjacent nodes per round 
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1 quantum message (unbounded length) between adjacent nodes per round 
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Quantum Advantage in the LOCAL Model?

Is there any problem for which we can show a distributed quantum advantage?

There is a computational problem that can be solved in O(1) rounds 

in the quantum LOCAL model but requires Θ(n) rounds classically.
[LG, Nishimura, 

Rosmanis STACS’19]

There is a computational problem that can be solved in 1 round in 

the quantum LOCAL model but requires 2 rounds classically.

[Gavoille, Kosowski, 

Markiewicz DISC’09]

YES!

two weaknesses: ✓ the computational task is not useful

✓ the solutions are not efficiently checkable 

(checking if the solution is correct requires Θ(n) rounds)

remark: situation similar to “quantum supremacy” with quantum circuits

sampling from the outcome of a quantum circuit that measures a graph state in a random basis



Better Quantum Advantage in the LOCAL Model?

Is there any problem that someone actually cares about for which we can show 

distributed quantum advantage?

Nobody knows!

Is there any problem that is efficiently checkable for which we can show distributed 

quantum advantage?



Basic Problem: 3-Coloring on Rings

Any ring has a 3-coloring (i.e., a node coloring where neighbors have distinct colors)
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In the deterministic LOCAL model, a 3-coloring of a ring can be 

computed in Θ(log*n) rounds [Cole and Vishkin 1986] [Linial 1992]

n: number of nodes

Fundamental question: 

Can we do better (e.g., O(1) rounds) in the quantum setting?

Already asked in the early papers [Gavoille, Kosowski, Markiewicz DISC’09] [Arfaoui, Fraigniaud 2014] on quantum distributed computing 

3-coloring rings

Classical: Θ(log*n)

Quantum: ???

This is an efficiently checkable problem: each node only needs to check (in 1 round) if its 

color is distinct from the colors of its two neighbors

log*n: number of times the log function must be iteratively 
applied before the result is less than or equal to 1

(example: log*(265536) = 5)



Better Quantum Advantage in the LOCAL Model?

Nobody knows!

Is there any problem that is efficiently checkable for which we can show distributed 

quantum advantage?

Essentially all problems studied in the literature have the same property as 3-coloring: they 

are locally checkable (i.e., the nodes can check if a solution is valid in O(1) rounds)

Natural conjecture:

for all locally-checkable problems, there is no quantum advantage in the LOCAL model

3-coloring rings

Classical: Θ(log*n)

Quantum: ???

locally checkable



Causality
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this output only depends on the 

inputs within the light cone 

Quantum distributed algorithms satisfy causality



Non-Signaling “Algorithms”

Key idea: define a model so that it can do anything except violating causality 

Definition (r-hop non-signaling distribution):

[Gavoille, Kosowski, Markiewicz DISC’09][Arfaoui, Fraignaud 2014]

✓ fix any set of nodes X

✓ changes in the input more than r hops away from X do 

not influence the output distribution of X

r

Distributions



Three Models
Classical (deterministic or randomized) distributed algorithms

Quantum distributed algorithms

Non-signaling “algorithms” (non-signaling distributions)

how far do you 

need to see? 

classical 

probability theory

???

Conjecture: for all locally-checkable problems, there is no quantum advantage in the LOCAL model

Natural approach to prove the conjecture:

Show that for any locally-checkable problem, non-signaling “algorithms” are not more 

powerful than classical algorithms (this would imply “classical = quantum = non-signaling”)



Our Main Result

Natural approach to prove the conjecture:

Show that for any locally-checkable problem, non-signaling “algorithms” are not more 

powerful than classical algorithms (this would imply “classical = quantum = non-signaling”)

✓Proved in [Gavoille, Kosowski, Markiewicz DISC’09] for 2-coloring in rings 

✓Proved in [Coiteux-Roy et al., STOC’24, TQC’24]  for graph coloring in arbitrary bipartite graphs

yesterday’s talk

Our main result (informal)

There exist many classes of locally-checkable problems for which non-

signaling “algorithms” are more powerful than classical algorithms  

Conjecture: for all locally-checkable problems, there is no quantum advantage in the LOCAL model

(positive interpretation: there might be a quantum advantage!)

this natural approach 

doesn’t work



All the Models Discussed in our Paper

Conjecture: there is no quantum advantage for a locally-checkable problem in the LOCAL model
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All the Models Discussed in our Paper



Main Result
Conjecture: there is no quantum advantage for a locally-checkable problem in the LOCAL modelTheorem 1

3-coloring rings

Classical: Θ(log*n)

Quantum: ???

Any locally-checkable problem that can be solved in o(log n) rounds in the deterministic 

LOCAL model can be solved in O(1) rounds in the non-signaling model.

Non-signaling: Θ(1)

already obtained in 
[Holroyd, Liggett 2016]

[Holroyd, Hutchcroft, Levy 2018] 

o(log n)

O(1)

The natural approach to solve the conjecture doesn’t work for a very large class of problems 

(positive interpretation: there might be a quantum advantage!)



For trees

Second Result
Conjecture: there is no quantum advantage for a locally-checkable problem in the LOCAL modelTheorem 2

In trees, any locally-checkable problem that can be solved in o(log log n) rounds in the 

non-signaling model can be solved in O(log*n) rounds in the deterministic LOCAL model.

o(log log n)

O(log*n)

In trees, there is no locally-checkable problem with locality 

between ω(log*n) and o(log log n) in the quantum LOCAL model

complexity
Θ(1) Θ(log*n) Θ(log log n)

? ?



Overview of the Proof of the Main Result

Conjecture: there is no quantum advantage for a locally-checkable problem in the LOCAL modelTheorem 1

Any locally-checkable problem that can be solved in o(log n) rounds in the 

deterministic LOCAL model can be solved in O(1) rounds in the non-signaling model.

3. We show how to combine 1 and 2 to obtain a (d+1)-coloring for any graph of max degree d

A reduction [adapted from prior works] from any locally-checkable problem that can 

be solved in o(log n) rounds in the deterministic LOCAL model to the problem of 

computing a (d+1)-coloring of the graph, where d is the maximum degree of the graph

Tool #2:

Tool #1: An O(1)-round non-signaling strategy for 3-coloring a ring 
from [Holroyd, Liggett 2016] [Holroyd, Hutchcroft, Levy 2018] 

1. We show that the O(1)-round non-signaling for 3-coloring a ring (Tool #1) can be extended to    

3-coloring a “pseudoforest”

2. We observe that all bounded-degree graphs have a “nice” decomposition in pseudoforests

4. The conclusion follows using the reduction from Tool #2



3-Coloring a Ring: Non-Signaling Strategy
[Holroyd, Liggett 2016] [Holroyd, Hutchcroft, Levy 2018] 

Consider the following probabilistic process:

1. put a uniformly random color (   ,    or    ) at a uniformly random position

2. put a different uniformly random color at a different uniformly random position

3. repeat n-2 times

pick a uniformly random node between consecutive colored nodes and 

insert a color differing from the colors of the two colored neighbors. 
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This process always produces a valid 3-coloring of the ring

Theorem ([Holroyd, Liggett 2016] [Holroyd, Hutchcroft, Levy 2018]):

The restrictions to any two sets of vertices at graph 

distance greater than 2 are independent of each other.

we get a probability distribution over valid 3-colorings of the ring

1-hop non-signaling distribution 



Conclusion

✓ We have shown several relations between the classical, quantum, non-signaling

LOCAL models (and many more models)

✓ Main message (for the quantum community):

“For a large class of problems, it is not possible to exclude quantum 

advantage by using non-signaling arguments” 

✓ Open problems

• Prove a quantum advantage for some locally-checkable problem

• Can we exclude quantum advantage for some concrete locally-checkable problem 

that has classical complexity Θ(log*n)? For instance, 3-coloring in rings?

• Does shared entanglement help for any locally-checkable problem?

Any locally-checkable problem that can be solved in o(log n) rounds in the classical 

LOCAL model can be solved in O(1) rounds in the non-signaling model.

Theorem 1

(positive interpretation: there might be a quantum advantage!)
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