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Proof verification

• P vs NP 

• P:=problems that can be computed efficiently (in poly-time)

• NP:=problems that can be verified efficiently with the help of proofs

• Yes-No problem 𝐴 = 𝐴𝑦𝑒𝑠, 𝐴𝑛𝑜 ∈ NP ⇔∃𝑉: poly-time algorithm

• (completeness) 𝑥 ∈ 𝐴𝑦𝑒𝑠 → ∃𝑤 [𝑉 𝑥,𝑤 = 1 (𝑦𝑒𝑠)]
• 𝑤 is called a certificate (proof, witness)

• (soundness) 𝑥 ∈ 𝐴𝑛𝑜 → ∀𝑤 [𝑉 𝑥,𝑤 = 0 (𝑛𝑜)]

Ex: Factoring

Input: positive integers 𝑁 & 𝑘

Output: Yes⇔𝑁 has a non-trivial divisor smaller than 𝑘

Certificate: Any non-trivial divisor smaller than 𝑘



NP as communication systems

• Yes-No problem 𝐴 = 𝐴𝑦𝑒𝑠, 𝐴𝑛𝑜 ∈ NP ⇔∃𝑉: poly-time algorithm

• (completeness) 𝑥 ∈ 𝐴𝑦𝑒𝑠 → ∃𝑦 [𝑉 𝑥,𝑤 = 1 (𝑦𝑒𝑠)]

• (soundness) 𝑥 ∈ 𝐴𝑛𝑜 → ∀𝑦 [𝑉 𝑥,𝑤 = 0 (𝑛𝑜)]

• Prover (Merlin): computationally unlimited 
• Sends 𝑤

• Verifier (Arthur): computationally limited (poly-time)
• Receives 𝑤 and verifies whether 𝑉 𝑥,𝑤 = 1

• MA:=Randomized version of NP; poly-time⇒randomized poly-time

Prover(Merlin) 
Unlimited power

Verifier(Arthur) 
Polynomial-time computation

𝑤
𝑦𝑒𝑠/𝑛𝑜 ?

certificate/proof



Extensions of NP

• Interactive proof
• Prover and verifier can interact (two-way 

communication)

• Multi-prover interactive proof
• Multiple provers can interact with verifier

• Provers cannot communicate with each other

• Multi-verifier (interactive) proof
• Verifier consisting of multiple parties can interact 

with prover

• Parties can communicate with each other but the 
communication is expensive

• Target in this talk
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Distributed Certification

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑊

• Distributed Merlin-Arthur (dMA) protocols
• Proof labeling scheme [Korman-Kutten-Peleg 10]

• Locally checkable proof [Göös-Suomela 16]

• Nondeterministic local decision [Fraigniaud-
Korman-Peleg 13]

etc

• Input
• Graph (structure of the network)

• Strings for nodes (terminals)

Verifier (Arthur)

terminals (nodes who have data) 



Distributed Merlin-Arthur (dMA) protocol

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑤 𝑤′
Two phases:
1. (Prover phase) Prover 

sends certificates to 
each node



Distributed Merlin-Arthur (dMA) protocol

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑤 𝑤′
Two phases:
1. (Prover phase) Prover 

sends certificates to each 
node

2. (Verification phase) Each 
node exchanges messages 
with the neighbors



Properties of dMA

𝑥

𝑧

𝑦

M

Prover 
(Merlin)

𝑊Properties:
(YES case: Completeness) 
∃𝑊[all nodes accept] 
(w.h.p.)
(NO case: Soundness)
∀𝑊[some node rejects]
(w.h.p.)



Complexity of dMA

• Efficiency of NP
• Time (polynomial-time)

• Efficiency of dMA
• Communication

• Unlimited prover knows all information (network & 
terminals’ inputs)

• Verifier knows only local information

• Prover phase: proof (or certificate)

• Verification phase: messages among neighbors

• Local proof (message) size:=maximum of the 
number of bits of proofs (messages) sent to nodes  
(sent between neighbors)

• Total proof (message) size:=sum of the number of 
bits of proofs (messages) sent to nodes (sent 
between neighbors)

𝑥

𝑧

𝑦

M

𝑤1

𝑚Prover 
(Merlin)

𝑤2



Distributed Quantum Merlin-Arthur (dQMA)

• Distributed Quantum Merlin-Arthur (dQMA) 
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

Q. Which problems are efficient for dQMA protocols?

𝑥

𝑧

𝑦

M

|𝑊⟩

|𝜓⟩

[FLNP21]

Prover 
(Merlin)

[FLNP21] P. Fraigniaud, F. Le Gall, HN, A. Paz, Proc. ITCS21, arXiv:2002.10018



EQ: Equality of Data

• Replicated data on a network

• Are all data identical? 

• EQ 𝑥1, ⋯ , 𝑥𝑡 = 1 ⇔ 𝑥1 = ⋯ = 𝑥𝑡
• 𝑗th terminal has 𝑥𝑗 ∈ 0,1 𝑛

𝑥1

𝑥3

𝑥2

terminals (nodes who have data) 



dMA Protocol for EQ 

𝑥

𝑥

𝑥

M

Prover 
(Merlin)

Trivial protocol:
(P) Prover M sends 𝑥 to 
intermediate nodes when all 
data are 𝑥
(V) Each node checks if it is 
same as the neighbor’s ones

(YES case: Completeness)
∃𝑊[all nodes accept]

𝑥
𝑥

𝑥
𝑥

𝑥

𝑥

𝑥



dMA Protocol for EQ

𝑥

𝑥

𝑥′

M

Prover 
(Merlin)

Trivial protocol:
(P) Prover M sends 𝑥 to 
intermediate nodes when all 
data are 𝑥
(V) Each node checks if it is 
same as the neighbor’s ones

(NO case: Soundness)
∀𝑊[some node rejects]

𝑥
𝑥′

𝑧
𝑧′

𝑥

𝑥

𝑥



Results for EQ

• Distributed Quantum Merlin-Arthur (dQMA) protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

• Classical lower bound for EQ
• Any dMA protocol requires local proof size Ω 𝑛 (i.e., Ω(𝑛)-bit certificates to 

some node) when the error probability is reasonably small (say, 1/4)

M

[FLNP21]

𝑥1 𝑥2



Results for EQ

• Distributed Quantum Merlin-Arthur (dQMA) 
protocols on the network
• Quantum certificates from the prover

• Quantum messages among nodes

• Classical lower bound for EQ
• Any dMA protocol requires local proof size Ω(𝑛) when the 

error probability is reasonably small (say, 1/4)

• Quantum upper bound for EQ
• ∃ dQMA protocol for EQ with local proof size & message 

size 𝑂(𝑡𝑟2 log 𝑛)

• 𝑡:= number of the terminals (= nodes who have data)

• 𝑟 ≔ diameter of the network

• 𝒕 and 𝒓 are typically much smaller than 𝒏

𝑥1

𝑥3

𝑥2

M

|𝑊⟩

|𝜓⟩

[FLNP21]



Results for EQ

• Quantum upper bound for EQ
• ∃ dQMA protocol for EQ with local proof size & 

message size 𝑂(𝑡𝑟2 log 𝑛)
• 𝑡:= number of the terminals (= nodes who have data)

• 𝑟 ≔ diameter of the network

• 𝒕 and 𝒓 are typically much smaller than 𝒏

• Proof strategy

• Prover sends quantum fingerprint of the 
data to intermediate nodes

• Verifier does quantum fingerprint check 
(by SWAP test) in the line network (sound 
for entangled proofs)

• Verifier checks a spanning tree sent from 
the prover [Korman-Kutten-Peleg 10]

[FLNP21]
𝑥1

𝑥6

𝑥2
M

𝑥3
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|ℎ𝑥3⟩
|ℎ𝑥3⟩ |ℎ𝑥3⟩

|ℎ𝑥3⟩
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|ℎ𝑥7⟩
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|ℎ𝑥2⟩



Follow-up work

• Distributed quantum interactive proofs [LMN23-1]
• Verifier (network) can interact with prover (Merlin)

• Distributed quantum state synthesis [LMN23-2]
• Yes-No problems ⇒ generation of quantum states

• Application: dQMA proof systems for Set-Equality 

[LMN23-1] F. Le Gall, M. Miyamoto, HN, Proc. STACS23, arXiv: 2210.01390
[LMN23-2] F. Le Gall, M. Miyamoto, HN, Proc. MFCS23, arXiv: 2210.01389



Questions

• More problems
• EQ

• Set Equality

• ???

• Quantum lower bound
• Proof size

• Message size 

𝑥

𝑧

𝑦

M

|𝑊⟩

|𝜓⟩



Our results [HKN24]

• More problems can be verified in dQMA proof systems
• Hamming distance 

• Ranking verification

• First quantum lower bounds
• Proof size + message size

[HKN24] A. Hasegawa, S. Kundu, HN, Proc. PODC24, arXiv:2403.14108



Hamming distance

• Natural extension of EQ

• EQ 𝑥1, ⋯ , 𝑥𝑡 = 1 ⇔ 𝑥1 = ⋯ = 𝑥𝑡

• 𝐻𝐴𝑀𝑑 𝑥1, ⋯ , 𝑥𝑡 = 1 ⇔ ∀𝑖, 𝑗[𝐻𝐷 𝑥𝑖 , 𝑥𝑗 ≤ 𝑑]

• 𝐻𝐷(𝑥, 𝑦):=Hamming distance between 𝑥 and 𝑦

[FLNP21] Efficient dQMA protocol in the line network for constant 𝑑

[Theorem] There is a dQMA protocol for 𝐻𝐴𝑀𝑑 for constant 𝑑 such that 
local proof (message) size is ෨𝑂 𝑡2𝑟2 (log 𝑛 2) in general networks

• 𝑡:= number of the terminals (= nodes who have data)

• 𝑟 ≔ diameter of the network

𝑥1 = 1111

𝑥2 = 1110

𝑥3 = 0111

𝐻𝐴𝑀1 𝑥1, 𝑥2, 𝑥3 = 0
𝐻𝐴𝑀2 𝑥1, 𝑥2, 𝑥3 = 1



Ranking verification

• Ranking: Generalization of maximum

• 𝑅𝑎𝑛𝑘𝑡
𝑗
𝑥1, 𝑥2, ⋯ , 𝑥𝑡 ≔ 𝑗-th largest value in the list 𝑥1, 𝑥2, ⋯ , 𝑥𝑡

• 𝑥𝑗 ∈ 0,1 𝑛 ≅ {0,1,⋯ , 2𝑛 − 1}: 𝑛-bit integer

• Ranking verification

• 𝑅𝑉𝑡
𝑖,𝑗

𝑥1, 𝑥2, ⋯ , 𝑥𝑡 ≔ 1 ⇔ 𝑥𝑖 is the 𝑗-th largest value in the list

• 𝑅𝑉𝑡
𝑖,1 𝑥1, 𝑥2, ⋯ , 𝑥𝑡 = 1 ⇔ 𝑥𝑖 is the largest value in the list

[Theorem] There is a dQMA protocol for 𝑅𝑉𝑡
𝑖,𝑗

such that local proof 
(message) size is 𝑂(𝑡𝑟2 log 𝑛) in a general network

𝑥1 = 1101 ≅ 13

𝑥2 = 1110 ≅ 14

𝑥3 = 1001 ≅ 9



Quantum lower bound

• We show lower bounds on the total proof & message size in the line network 
(where the both end nodes are the terminals)

[Theorem] The total proof & message size of any dQMA protocol for EQ is 

Ω( log 𝑛
1

4
−𝜀) where 𝜀 > 0 is any small constant (for any length 𝑟 of the line network)

• Ω( log 𝑛
1

2
−𝜀) when the length of the line is a constant

• 𝑂(𝑟3 log 𝑛) [FLNP21]: Upper bound on total proof & message size

M

𝑥 𝑦



Quantum lower bound

• We show lower bounds on the total proof & message size in the line network 
(where the both end nodes are the terminals)

[Theorem] The total proof & message size of any dQMA protocol for EQ is 

Ω( log 𝑛
1

4
−𝜀) where 𝜀 > 0 is any small constant (for any length of the line network)

[Theorem] The total proof & message size of any dQMA protocol for DISJ is Ω(𝑛1/3)

[Theorem] The total proof & message size of any dQMA protocol for IP is Ω(𝑛1/2)

M

𝑥 𝑦



Our results [HKN24]

• More problems can be verified in dQMA proof systems
• Hamming distance 
• Ranking verification

• First quantum lower bounds
• Proof size + message size (EQ, DISJ, IP)

• Improvement over [FLNP21]
• Local proof (message) size for EQ: 𝑂(𝑡𝑟2 log 𝑛) ⇒ 𝑂(𝑟2 log 𝑛)

• 𝑡:= number of the terminals (= nodes who have data)
• 𝑟 ≔ diameter of the network

• Permutation test & rigidity

• Quantum advantage for EQ on the line network even if the length is 
large compared to input length of EQ
• Total proof size: classical Ω(𝑟𝑛); quantum ෨𝑂(𝑟𝑛2/3)

• 𝑟:= length of the line (=diameter of the line)

[HKN24] A. Hasegawa, S. Kundu, HN, Proc. PODC24, arXiv:2403.14108



Proof ideas

• Ranking verification

• Lower bound for EQ



Ranking verification 

• Ranking verification

• 𝑅𝑉𝑡
𝑖,𝑗

𝑥1, 𝑥2, ⋯ , 𝑥𝑡 ≔ 1 ⇔ 𝑥𝑖 is the 𝑗-th largest value in the list

• 𝑅𝑉𝑡
𝑖,1 𝑥1, 𝑥2, ⋯ , 𝑥𝑡 = 1 ⇔ 𝑥𝑖 is the largest value in the list

[Theorem] There is a dQMA protocol for 𝑅𝑉𝑡
𝑖,𝑗

such that local proof (message) size is 
𝑂(𝑡𝑟2 log 𝑛)

• Proof strategy:
1. Creates a dQMA protocol for the Greater-Than (GT) function in the line 

network 

• 𝐺𝑇 𝑥, 𝑦 = ቊ
1 (𝑥 > 𝑦)
0 (𝑥 ≤ 𝑦)

• Reduces GT to EQ
• 𝐺𝑇 𝑥, 𝑦 = 1 ⇔ ∃𝑗 [𝑥𝑗 = 1 & 𝑦𝑗 = 0 & 𝑥1⋯𝑥𝑗−1 = 𝑦1⋯𝑦𝑗−1]

Ex: 𝑥 = 101011, 𝑦 = 101001

𝐺𝑇 𝑥, 𝑦 = 1 since 𝑥5 = 1 & 𝑦5 = 0 & 𝑥1𝑥2𝑥3𝑥4 = 𝑦1𝑦2𝑦3𝑦4



Ranking verification 

• Ranking verification

• 𝑅𝑉𝑡
𝑖,𝑗

𝑥1, 𝑥2, ⋯ , 𝑥𝑡 ≔ 1 ⇔ 𝑥𝑖 is the 𝑗-th 
largest value in the list

• 𝑅𝑉𝑡
𝑖,1 𝑥1, 𝑥2, ⋯ , 𝑥𝑡 = 1 ⇔ 𝑥𝑖 is the largest 

value in the list

[Theorem] There is a dQMA protocol for 𝑅𝑉𝑡
𝑖,𝑗

such that local proof (message) size is 𝑂(𝑡𝑟2 log 𝑛)

• Proof strategy:

1. Creates dQMA protocol for the Greater-
Than (GT) function in the line network 

2. Run the dQMA protocol for GT between 
node 𝒊 and each of the other terminals

𝑥1

𝑥6

𝑥2

𝑥𝑖

𝑥3

𝑥5

𝑥4



Proof ideas

• Ranking verification

• Lower bound for EQ



Proof sketch for EQ lower bound

• [Theorem] The total proof & message size of any 

dQMA protocol for EQ is Ω( log 𝑛
1

4
−𝜀) where 𝜀 > 0

is any small constant

• Reduction to 2-party communication complexity 
• QMA communication complexity [Raz-Shpilka 04]

• Special case that the network is the line with 2 nodes

• 𝑄𝑀𝐴𝑐𝑐 𝑓 ≔total proof & message size for verifying 
𝑓 𝑥, 𝑦 = 1

M

|𝑊⟩

A B

Input 𝑥 Input 𝑦

[Raz-Shapilka 04] R. Raz, A. Shapilka, Proc. CCC04



Proof sketch for EQ lower bound

• [Theorem] The total proof & message size of any 

dQMA protocol for EQ is Ω( log 𝑛
1

4
−𝜀) where 𝜀 > 0

is any small constant

• Reduction to 2-party communication complexity 
• QMA communication complexity [Raz-Shpilka 04]

• Special case that the network is the line with 2 nodes

• 𝑄𝑀𝐴𝑐𝑐 𝑓 ≔total proof & message size for verifying 
𝑓 𝑥, 𝑦 = 1

• Separable dQMA protocol
• Quantum proof must be a product of states for each 

party

• Protocols in [FLNP21,HKN24] are separable

M

|𝑊⟩

A B

Input 𝑥 Input 𝑦

M

𝑥 𝑦

𝑊 = 𝑤1 ⊗ 𝑤2 ⊗ 𝑤3 ⊗ 𝑤4



Proof sketch for EQ lower bound

[Lemma1 (dQMA⇒separable dQMA)]

If any function 𝑓: 0,1 𝑛 × 0,1 𝑛 → {0,1} has a dQMA protocol with total 
proof + min message size 𝐶 in the line of length 𝑟, then there is a 
separable dQMA protocol for 𝑓 with total proof size 𝑂(𝑟3𝐶2)

• Reduces to a 2-party QMA communication complexity (CC) protocol

𝑣0 𝑣1 𝑣𝑗 𝑣𝑗+1 𝑣𝑟

Input 𝑥 Input 𝑦

M

Alice Bob



Proof sketch for EQ lower bound

[Lemma1 (dQMA⇒separable dQMA)]

If any function 𝑓: 0,1 𝑛 × 0,1 𝑛 → {0,1} has a dQMA protocol with total 
proof + min message size 𝐶 in the line of length 𝑟, then there is a 
separable dQMA protocol for 𝑓 with total proof size 𝑂(𝑟3𝐶2)

• Reduces to a 2-party QMA communication complexity (CC) protocol

• Creates a separable dQMA protocol (based on [FLNP21]) for the CC 
protocol

M

|𝑊⟩

A B

Input 𝑥 Input 𝑦

|𝑚⟩

M

|𝑊⟩

𝑣0 𝑣1 𝑣𝑟−1 𝑣𝑟

|𝑚⟩

𝑚 ⊗2 𝑚 ⊗2

Input 𝑥 Input 𝑦



Proof sketch for EQ lower bound

• Gives a lower bound on separable dQMA protocols for EQ

• Total proof size Ω(𝑟 log 𝑛)

• Classical LB for EQ [FLNP21] + Size lower bound of quantum 
fingerprints 

• Lemma1 implies 

• Total proof & min message size Ω (log 𝑛
1

2
−𝜀/𝑟1+𝛿) for any constant 

𝜀, 𝛿 > 0 on (entangled) dQMA protocols for EQ

[Lemma1 (dQMA⇒separable dQMA) ] 
If any function 𝑓: 0,1 𝑛 × 0,1 𝑛 → {0,1} has a dQMA protocol with total proof + min message size 𝐶
on the line of length 𝑟, then there is a separable dQMA protocol for 𝑓 with total proof size 𝑂(𝑟3𝐶2)



Proof sketch for EQ lower bound

• Gives a lower bound on separable dQMA protocols for EQ
• Total proof size Ω(𝑟 log 𝑛)
• Classical LB for EQ [FLNP21] + Size lower bound of quantum 

fingerprints 

• Lemma1 implies 

• Total proof & min message size Ω (log 𝑛
1

2
−𝜀/𝑟1+𝛿) for any constant 

𝜀, 𝛿 > 0 on (entangled) dQMA protocols for EQ

• Gives another lower bound on dQMA protocols for EQ

• Ω(𝑟)

⇒

[Theorem] The total proof & min message size of any dQMA protocol for 

EQ is Ω( log 𝑛
1

4
−𝜀) where 𝜀 > 0 is any small constant



Summary & Future work
• Our results [HKN24]

• More problems can be verified in dQMA proof systems
• Hamming distance & Ranking verification

• First quantum lower bound

• Total proof size + message size: Ω( log 𝑛
1

4
−𝜀) (for EQ in the line network)

• Improvement over [FLNP21]
• Total proof size for EQ: 𝑂(𝑡𝑟3 log 𝑛) ⇒ 𝑂(𝑟3 log 𝑛)

• Quantum advantage for EQ on the line network even if the length is large 

compared to input length of EQ: classical Ω(𝑟𝑛) vs quantum ෨𝑂(𝑟𝑛
2

3)

• Future work
• Lower bounds on proof size (only)

• Quantum advantage for natural problems when the network size is large
[HKN24] A. Hasegawa, S. Kundu, HN, Proc. PODC24, arXiv:2403.14108


