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Outline

In this talk, I will introduce some of the joint works with Kwokwai Chan and Conan
Leung on quantum Tuyman lemma in geometric quantization and its applications.

Geometric quantization and Berezin-Toeplitz operators

Tuyman’s lemma revisited

Kähler quantization via Kapranov’s L∞ structure

Quantum Tuyman’s lemma and applications
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Mathematical thoery of quantization

The phase space of a classical mechanical system is described geometrically as a
symplectic manifold. The mathematical formulation of quantum mechanics is in terms
of operators on Hilbert spaces satisfying the Dirac axioms. There are two schemes for
quantization on symplectic manifolds: one is deformation quantization which focuses
on the algebra of operators, and the other is geometric quantization which focuses on
the Hilbert space of the quantum system.

The construction of geometric quantization (Hilbert spaces) depends on a choice of
polarization. There are two types of polarizations: real and complex polarizations. We
will focus on complex polarizations, which is equivalent to a complex structure on the
phase space making it a Kähler manifold.
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Geometric quantization and Toeplitz operators

On a Kähler manifold X , the Hilbert space (of level k) of its geometric quantization is
defined as

Hk := H0
∂̄

(X , L⊗k).

Here L denotes the prequantum line bundle on X .

On these Hilbert spaces Hk , we can define Toeplitz operators associated to a smooth
function f ∈ C∞(X ) as Tf ,k = Πk ◦mf . Here mf denotes the multiplication by a
smooth function f ∈ C∞(X ), and Πk denotes the orthogonal projection from smooth
sections to holomorphic sections.
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Toeplitz operators and deformation quantization

For two functions f and g , the compositions Tf ,k ◦ Tg ,k has the following asymptotic
property as k →∞:

Tf ,k ◦ Tg ,k ∼ Tfg ,k +
∑
i≥1

(
1

k

)i

· TCi (f ,g),k .

This gives rise to a deformation quantization of smooth functions on X by turning 1/k
into the formal variable ~.
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Deformation quantization

Deformation quantization is an associative but non-commutative deformation of the
algebra of smooth functions on symplectic manifolds.

Definition

Let (M, ω) be a symplectic manifold, then a deformation quantization of M is an
associative product ∗ on C∞(M)[[~]] such that

f ∗ g = f · g +
∑
i≥1

~iCi (f , g),

where Ci ’s are bi-differential operators, with C1(f , g)− C1(g , f ) = {f , g}.
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Tuyman’s lemma revisited

Recall that the Tuyman’s lemma is explicitly:

Theorem (Tuyman)

For every smooth function f ∈ C∞(X ), and any two holomorphic sections
s1, s2 ∈ H0

∂̄
(X , L⊗k), there is the following equality

〈∇Xf
s1 +

1

k
∆f · s1, s2〉 = 0.

Here Xf denotes the vector field associated to f , and ∆ is the Laplacian on X .

Since the holomorphic section s2 is arbitrary, this implies that
(
∇Xf

+ 1
k ∆f

)
s lies in

the orthognoal complement of the Hilbert space H0(X , L⊗k) ⊂ C∞(X , L⊗k).
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Tuyman’s lemma revisited

We can interprete Tuyman’s lemma as follows: for every smooth function f , we obtain
an associated differential operator

∇Xf
+

1

k
∆f : H0(X , L⊗k)→ C∞(X , L⊗k),

whose images actually lie the in the complement of the subspace of holomorphic
sections.

Question

Are there other differential operators associated to smooth functions, such that they
share the same property as in Tuyman’s lemma?
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Quantization of the L∞ structure

In 1996, Kapranov discovered an L∞ structure on Kähler manifolds in his study of
Rozansky-Witten theory. The main ingredient of this strucutre is a cochain complex
whose cohomology is isomorphic to holomorphic functions, which gives an equivalent
description of the complex structure (i.e., complex polarization) on X .

Theorem (Chan-Leung-L)

There exists a Fedosov connection D on X which is a quantum extension of
Kapranov’s L∞ structure on Kähler manifolds.

According to the first results, this Fedosov connection induces a BV quantization of
the Kähler manifold X . This quantization encodes not only the symplectic geometry
(i.e., phase space) but also the complex geometry.
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Fedosov connection on Kähler manifolds

We briefly describe the above Fedosov connection, i.e., quantum master equation. The
idea behind Fedosov’s original approach to deformation quantization is as follows: on
the Weyl bundle WX ,C := ŜymTX ∗C over the phase space X , there exists a fiberwise
star product ? which describes the local picture of quantization on Cn, and a (flat)
Fedosov connection gives the gluing data for these local quantizations which is of the
following form:

∇+
1

~
[γ,−]?.

Here [−,−]? denotes the bracket associated to the Wick product. The flat sections
under this connections are isomorphic to the quantum observables C∞(X )[[~]].
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Bargmann-Fock bundle

We follow the same line of thought and give a construction of Bargmann-Fock bundle
on Kähler manifolds, starting with the fiberwise Bargmann-Fock action of the Weyl
bundle WX ,C on WX = ŜymTX ∗, which we denote by ~.

By twisting WX with the tensor power of the prequantum line bundle L1/~, we obtain
the Bargmann-Fock bundle FX as a module sheaf over the Weyl bundle with respect
to the fiberwise star product. There exists a Fedosov connection (i.e., quantum master
equation) on the Fock bundle of the following form:

D = ∇+
1

~
γ ~−.
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Bargmann-Fock bundle

Theorem (Chan-Leung-L)

The Fedosov connections on the Weyl bundle and Fock bundle are compatible in
the sense that D(α~ s) = D(α) ~ s + α~ D(s).

Taking the evaluation ~ = 1/k, the flat sections of the Fock bundle is isomorphic
to H0

∂̄
(X , L⊗k).

This result implies that we obtain a quantization scheme which involves both quantum
observables and geometric quantization (Hilbert spaces) as modules, using the
language of formal geometry and homological algebra.
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A weight on the Weyl bundle

We will focus on the Berezin-Toeplitz deformation quantization, and will denote the
corresponding Fedosov connection by DBT (here the subscript BT is short for
Berezin-Toeplitz), which induces a cochain complex

(A•X ⊗WX ,C,DBT ) .

We will call this the Fedosov complex.

Definition

We define a weight on the formal Weyl bundle WX ,C[[~]] by assigning weights on
generators:

|~| = 1, |ȳ j | = 1, |y i | = 0.

The fiberwise Wick product ? on WX ,C is compatible with this weight.
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A weight on the Weyl bundle

We have the following picture illustrating the weights: here the horizontal direction
denotes the power of ~, and the vertical direction denotes the polynomial degree in the
anti-holomorphic Weyl bundle WX .
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Differential operators associated to functions

One of the main result in the theory of Fedosov quantization is that given any smooth
function f ∈ C∞(X ), there is a uniquely determined flat section Of of the Weyl bundle
such that its symbol σ(Of ) = f .

This is also generalized to the Bargman-Fock module case: there is the following
one-to-one correspondence via the symbol map:

Γflat(X ,Fk) ∼= H0(X , L⊗k).

More explicitly, given any holomorphic section s ∈ H0(X , L⊗k), there is an associated
flat section Os .
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Differential operators associated to functions

Using the weight we defined on the Weyl bundle WX ,C, we can decompose a flat
section Of as

Of = (Of )0 + (Of )1 + · · · .

We are now ready to define a series of operators via the Fedosov quantization method
as follows: for each m ≥ 0, we let

γf ,m(s) := σ ((Of ) ~k Os) .

The output is in general only a smooth section of L⊗k . Since at each x0 ∈ X , the flat
sections Of and Os only depends on the infinite jet (Taylor expansion) of f and s
respectively, we obtain a differential operator γf ,m : H0(X , L⊗k).
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Differential operators associated to functions

Here we give an example. A simple computation shows that for weight m = 1 case,
there is

Lemma

The differential operator γf ,1 is exactly the one in Tuyman’s lemma:

γf ,1 = ∇Xf
+

1

k
∆f .

Qin Li Quantum Tuyman lemma in Geometric Quantization



Quantum Tuyman lemma

Thus the classical Tuyman lemma can written as the following orthogonality relation:

〈γf ,1(s1), s2〉 = 0,

for any holomorphic sections s1, s2 ∈ H0(X , L⊗k). It is then not surprising that for all
weights m ≥ 1, there is a similar orthogonality relation. This is what we call the
Quantum Tuyman lemma.

Theorem (Chan-Leung-L)

For every weight m ≥ 1, we have the following vanishing for any holomorphic sections
s1, s2 ∈ H0(X , L⊗k):

〈γf ,m(s1), s2〉 = 0.

Equivalently, γf ,m(s1) always lives in the orthogonal complement of H0(X , L⊗k).
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Quantum Tuyman lemma

I will briefly describe the proof of this theorem. Recall that the differential operators
γf ,m(s) is defined using the flat sections associated to both f ∈ C∞(X ) and
s ∈ H0(X , L⊗k):

σ((Of )m ~ Os).

Using the fact that both Of and Os are flat under the Fedosov connections, we can
show that the following top degree differential form on X

〈γf ,m(s1), s2〉 · ωn

is actually exact. Thus the Stoke’s formula implies the desired vanishing.
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Application: Quantum symmetry

Infinitesimally, a quantum symmetry is a vector field V on X which preserves both the
symplectic and complex structure of X . This type of vector field can be lifted to an
action on smooth sections of (tensor power of) the pre-quantum line bundle L⊗k ,
which preserves the sub-space consisting of holomorphic sections. This action is given
by the following explicit formula:

LV (s) = ∇V +
1

k
µ(V ).

Here f = µ(V ) denotes the moment map associated to the vector field V . By using
the original Tuyman’s lemma, we can show that the infinitesimal action LV can be
identified with a Berezin-Toeplitz operator.
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Quantum symmetry

More precisely, Tuyman’s lemma applied to the moment map f = µ(V ) implies that

Πk ◦ (∇Xf
+

1

k
∆f )(s) = Πk ◦ (∇V +

1

k
∆f )(s) = 0.

Here Πk denotes the orthogonal projection to the subspace of holomorphic sections.
And there is

LV (s) =Πk ◦ LV (s) = Πk ◦ (∇V +
1

k
µ(V ))(s)

=Πk ◦ (−1

k
∆f +

1

k
f )(s).

The right hand side of the last equality is exactly a Berezin-Toeplitz operator.
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Quantizable functions and differential operators

As another application of the Quantum Tuyman Lemma, we will give an answer to the
following question:

Question

When is the Berezin-Toeplitz operator Tf ,k associated to a smooth function f a
holomorphic differential operator?

We have the following theorem:

Theorem (Chan-Leung-L)

For a smooth function f ∈ C∞(X ), its associated Berezin-Toeplitz operator Tf ,k is a
holomorphic differential operator if and only if f is a quantizable function.
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Quantizable functions and differential operators

Here I will briefly describe the proof of this theorem. Given a quantizable function f ,
the associated flat section Of are denoted by the stars in the following picture.

0 2

0

2

f 0 0 · · ·

∗ ∗ ∗ · · ·

· · · · · · · · · · · ·

Qin Li Quantum Tuyman lemma in Geometric Quantization



Quantizable functions and differential operators

On one hand, the Berezin-Toeplitz operator Tf ,k is defined using the terms in the first
row, i.e., the function f itself. On the other hand, the corresponding holomorphic
differential operator is defined using the Bargmann-Fock action the Fedosov
construction, in which all the terms in Of is needed.

However, by the Quantum Tuyman Lemma, all the terms in Of which is NOT in the
first row will only contribute terms which is orthogonal to the subspace
Hk ⊂ C∞(X , L⊗k). And the theorem follows from the following equality:

f · s + orthogonal complement terms = σ (Of ~k Os) ∈ H0(X , L⊗k),

where the right hand side is exactly Tf ,k(s).
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Further questions

1 Now that differential operators can be identified with quantizable functions, are
there symplectic reductions of G -invariant operators on M//G? What happens to
their correlation functions?

2 Are there higher dimensional analogues of this picture? For instance, in two
dimensional field theories, what are the ”quantizable function” and quantum
symmetries in chiral differential operators?
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Thank You!
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