Time-Efficient Quantum Entropy Estimator via Samplizer

Qisheng Wang ^{1,2} Zhicheng Zhang ³

¹University of Edinburgh

²Nagoya University

³University of Technology Sydney

Shenzhen-Nagoya Workshop on Quantum Science 2024 September 19 This talk is based on [Wang and Zhang, ESA 2024]. arXiv:2401.09947

Entropy

Probability distribution p

$$H(p) = -\sum_{j} p_{j} \ln(p_{j})$$

Shannon entropy

$$H_{lpha}(p) = rac{1}{1-lpha} \ln(\sum_{j} p_{j})$$

Rényi entropy

Quantum state ρ

$$S(
ho) = - {
m tr}(
ho \, {
m ln}(
ho))$$

Von Neumann entropy

generalize

$$S_{lpha}(
ho)=rac{1}{1-lpha}\ln(ext{tr}(
ho^{lpha}))$$

Quantum Rényi entropy

Classical Entropy Estimators

• Shannon entropy estimator.

[Valiant and Valiant, STOC 2011, NIPS 2013, *J. ACM* 2017] [Jiao, Venkat, Han, and Weissman, *IEEE Trans. Inf. Theory* 2015, 2017]

[Wu and Yang, IEEE Trans. Inf. Theory 2016]

- ▶ Sample complexity: $\Theta(N/\log(N))$ for N-dimensional distributions.
- α -Rényi entropy estimator.

[Acharya, Orlitsky, Suresh, and Tyagi, IEEE Trans. Inf. Theory 2017]

- ▶ Sample complexity: $\widetilde{O}(N^{1/\alpha})$ for $0 < \alpha < 1$.
- ▶ Sample complexity: O(N) for $\alpha > 1$.

ALL these estimators have time complexity *linear* in the sample complexity.

Quantum Entropy Estimators

- Sample Access:
 Given access to identical copies of the quantum state.
- Query Access:
 Given access to the state-preparation circuit of the quantum state.

Quantum Entropy Estimators I: Sample Access

• Von Neumann entropy estimator.

[Acharya, Issa, Shende, and Wagner, ISIT 2019, *IEEE J. Sel. Areas Inf. Theory* 2020]
[Bavarian, Mehraban, and Wright, 2016]

- ▶ Sample complexity: $O(N^2)$, Time complexity: $\widetilde{O}(N^6)$.
- Quantum α -Rényi entropy estimator. [Acharya, Issa, Shende, and Wagner, ISIT 2019, *IEEE J. Sel. Areas Inf. Theory* 2020]
 - ▶ Sample complexity: $O(N^{2/\alpha})$, Time complexity: $\widetilde{O}(N^{6/\alpha})$ for $0 < \alpha < 1$.
 - ▶ Sample complexity: $O(N^2)$, Time complexity: $\widetilde{O}(N^6)$ for $\alpha > 1$.

Quantum Entropy Estimators II: Query Access

Von Neumann entropy estimator.

```
[Gilyén and Li, ITCS 2020]
[Gur, Hsieh and Subramanian, QIP 2022]
[Wang, Guan, Liu, Zhang, and Ying, IEEE Trans. Inf. Theory 2024]
```

- Query complexity: $\widetilde{O}(N)$.
- Quantum α -Rényi entropy estimator.

[Subramanian and Hsieh, *Phys. Rev. A* 2021] [Wang, Guan, Liu, Zhang, and Ying, *IEEE Trans. Inf. Theory* 2024] [Wang, Zhang, and Li, *IEEE Trans. Inf. Theory* 2024]

- Query complexity: $\widetilde{O}(N^{\frac{1}{2\alpha}+\frac{1}{2}})$ for $0 < \alpha < 1$.
- Query complexity: O(N) for $\alpha > 1$.

Motivation

There is a cubic gap between the sample complexity and the time complexity of the known quantum entropy estimators with sample access.

- Von Neumann entropy estimator.
 - [Acharya, Issa, Shende, and Wagner, ISIT 2019, *IEEE J. Sel. Areas Inf. Theory* 2020]
 [Bavarian, Mehraban, and Wright, 2016]
 - ▶ Sample complexity: $O(N^2)$, Time complexity: $\widetilde{O}(N^6)$.
- Quantum α -Rényi entropy estimator. [Acharya, Issa, Shende, and Wagner, ISIT 2019, *IEEE J. Sel. Areas Inf. Theory* 2020]
 - ► Sample complexity: $O(N^{2/\alpha})$, Time complexity: $\widetilde{O}(N^{6/\alpha})$ for $0 < \alpha < 1$.
 - ▶ Sample complexity: $O(N^2)$, Time complexity: $\widetilde{O}(N^6)$ for $\alpha > 1$.

Motivation

There is a cubic gap between the sample complexity and the time complexity of the known quantum entropy estimators with sample access.

Question:

Can we estimate quantum entropy with time complexity linear in the sample complexity?

Main Results

We propose new quantum entropy estimators based on an algorithmic tool samplizer.

Table: Sample and time complexities for entropy estimation of quantum states.

	Reference	0 <lpha<1< th=""><th>lpha=1 (von Neumann)</th><th>$\alpha > 1$</th></lpha<1<>	lpha=1 (von Neumann)	$\alpha > 1$
Upper Bounds	[AISW20]	$O(N^{2/lpha})$ samples $\widetilde{O}(N^{6/lpha})$ time	$O(N^2)$ samples $\widetilde{O}(N^6)$ time	$O(N^2)$ samples $\widetilde{O}(N^6)$ time
	This work	$\widetilde{O}(N^{4/\alpha-2})$ samples $\widetilde{O}(N^{4/\alpha-2})$ time	$\widetilde{O}(\mathit{N}^2)$ samples $\widetilde{O}(\mathit{N}^2)$ time	$\widetilde{O}(N^{4-2/lpha})$ samples $\widetilde{O}(N^{4-2/lpha})$ time
Lower Bounds	[AISW20]	$\Omega(\mathit{N}^{1+1/lpha})$ (EYD)	$\Omega(N^2)$ (EYD)	$\Omega(N^2)$ (EYD)
	This work	$\Omega(N+N^{1/\alpha-1})$	Ω(N)	Ω(N)

The lower bounds tagged EYD only hold for those algorithms based on Empirical Young Diagram algorithms.

IDEA in One Sentence

Design quantum sample-access algorithms by imitating quantum query-access algorithms.

Intuition: Quantum query-access algorithms usually have time complexity linear (up to polylogarithmic factors) in the query complexity.

A Simple Quantum Query Algorithm

Consider a quantum query algorithm for estimating von Neumann entropy based on quantum singular value transformation (QSVT) [Gilyén, Su, Low, and Wiebe, STOC 2019].

The key step:

$$U = \begin{bmatrix} \rho & * \\ * & * \end{bmatrix} \xrightarrow{\mathsf{QSVT}} \begin{bmatrix} -\ln(\rho) & * \\ * & * \end{bmatrix} =: U'$$

A Simple Quantum Query Algorithm

Consider a quantum query algorithm for estimating von Neumann entropy based on quantum singular value transformation (QSVT) [Gilyén, Su, Low, and Wiebe, STOC 2019].

The key step:

$$U = \begin{bmatrix} \rho & * \\ * & * \end{bmatrix} \xrightarrow{\mathsf{QSVT}} \begin{bmatrix} -\ln(\rho) & * \\ * & * \end{bmatrix} =: U'$$

Then, by applying the Hadamard test [Aharonov, Jones, and Landau, STOC 2006, *Algorithmica* 2009] on U' and ρ , we can estimate $\operatorname{tr}(-\rho \ln(\rho))$.

A Simple Quantum Query Algorithm, Visualized

Samplizer

We propose a useful tool — **samplizer** that can "samplize" a quantum query algorithm to a quantum sample algorithm with similar behavior.

Quantum Query Algorithms

A quantum query algorithm with access to quantum oracle U is described by a quantum circuit family $C=\{C[U]\}$ with

$$C[U] = G_Q U_Q \dots G_2 U_2 G_1 U_1 G_0,$$

where U_i is either (controlled-)U or (controlled-) U^{\dagger} and G_i consists of one- and two-qubit quantum gates.

Here, Q is the query complexity of quantum query algorithm C.

Quantum Query Algorithms

Examples:

- Quantum search [Grover, STOC 1996]
- Element distinctness
 [Amb07, FOCS 2004, SIAM J. Comput. 2007]
- Solving systems of linear equations [Harrow, Hassidim, and Lloyd, Phys. Rev. Lett. 2009]
- Hamiltonian simulation
 [Low and Chuang, Quantum 2019]
- . . .

Quantum Sample Algorithms

A quantum sample algorithm with access to independent samples of a quantum state ρ is described by a quantum channel family $\mathcal{E} = \{\mathcal{E}[\rho]\}$ implemented by a quantum circuit W such that

$$\mathcal{E}[\rho](\varrho) = \operatorname{tr}_{\mathcal{S}}\left(W\left(\underbrace{\rho^{\otimes k} \otimes |0\rangle\langle 0|^{\otimes \ell}}_{\mathcal{S}} \otimes \varrho\right)W^{\dagger}\right).$$

$$S \left\{ \begin{array}{c} \rho^{\otimes k} \not \longrightarrow D \\ |0\rangle^{\otimes \ell} \not \longrightarrow W \longrightarrow \mathcal{E}[\rho](\varrho) \end{array} \right.$$

Here, k is the sample complexity of quantum sample algorithm \mathcal{E} .

Quantum Sample Algorithms

Examples:

- Quantum state tomography
 [Haah, Harrow, Ji, Wu, and Yu, STOC 2016, IEEE Trans. Inf. Theory 2017]
 [O'Donnell and Wright, STOC 2016]
- Quantum state certification
 [Bădescu, O'Donnell and Wright, STOC 2019]
- Shadow tomography of quantum states
 [Aaronson, STOC 2018, SIAM J. Comput. 2020]
 [Huang, Kueng, and Preskill, Nat. Phys. 2020]

Samplizer

Definition 1 (Samplizer)

A samplizer Samplize, $\langle * \rangle$ is a converter from a quantum query algorithm to a quantum sample algorithm with the following property:

For $\delta>0$, quantum query algorithm $C=\{C[U]\}$, and quantum state ρ , there exists a unitary operator U_{ρ} that is a block-encoding of ρ such that

$$\left\| \mathsf{Samplize}_{\delta} \langle \mathit{C} \rangle [\textcolor{red}{\rho}] - \mathit{C} [\textcolor{red}{\textit{U}_{\rho}}] \right\|_{\diamondsuit} \leq \delta,$$

where $\|\cdot\|_{\diamond}$ denotes the diamond norm between quantum channels.

Here, U is a block-encoding of A if the matrix A is in the upper left corner in the matrix representation of U (in the computational basis), i.e.,

$$U = \begin{bmatrix} A & * \\ * & * \end{bmatrix}.$$

Samplizer

Theorem 2 (Optimal samplizer)

There is an optimal samplizer Samplize_ ${*}\langle {*}\rangle$ such that for any $\delta>0$ and quantum query algorithm C with query complexity Q, the quantum sample algorithm Samplize_ ${\delta}\langle C\rangle$ has sample complexity $\widetilde{\Theta}(Q^2/\delta)$.

 $\begin{array}{ccc} \text{Quantum query algorithm} & & \text{Quantum sample algorithm} \\ & C & & \text{Samplize}_{\delta}\langle C \rangle \\ \text{Quantum query complexity} & \xrightarrow{\text{Samplizer}} & \text{Quantum sample complexity} \\ & Q & & \widetilde{\Theta}(Q^2/\delta) \end{array}$

Time-Efficient Von Neumann Entropy Estimator

Recall the simple quantum query algorithm:

Time-Efficient Von Neumann Entropy Estimator

The main part of the quantum circuit can be samplized:

Time-Efficient Von Neumann Entropy Estimator

${\bf Algorithm~1~estimate_von_Neumann_main}(\varepsilon,\delta) -- quantum~sample~algorithm$

Resources: Access to independent samples of N-dimensional quantum state ρ of rank r.

Input: $\varepsilon \in (0,1)$ and $\delta \in (0,1)$.

Output: \widetilde{S} such that $|\widetilde{S} - S(\rho)| \le \varepsilon$ with probability $\ge 1 - \delta$.

1: function von_Neumann_subroutine $(\delta_p, \varepsilon_p, \delta_Q)$ — quantum query algorithm

Resources: Unitary oracle U_A that is a block-encoding of A.

- 2: Let p(x) be a polynomial of degree $d_p = O\left(\frac{1}{\delta_p}\log\left(\frac{1}{\varepsilon_p}\right)\right)$ such that $|p(x)| \leq \frac{1}{2}$ for $x \in [-1, 1]$ and $|p(x) \frac{\ln(1/x)}{4\ln(2/\delta_n)}| \leq \varepsilon_p$ for $x \in [\delta_p, 1]$.
- 3: Construct unitary operator $U_{p(A)}$ that is a $(1, a, \delta_Q)$ -block-encoding of p(A), using $O(d_p)$ queries to U_A .
- 4: **return** $U_{p(A)}$. \leftarrow a unitary block-encoding of $p(A) \lesssim -\ln(A)$ using $\widetilde{O}(1/\delta_p)$ queries to U_A .
- 5: end function
- 6: $\delta_p \leftarrow \frac{\varepsilon}{128r \ln(32r/\varepsilon)}$, $\varepsilon_p \leftarrow \frac{\varepsilon}{32 \ln(2/\delta_p)}$, $\delta_Q \leftarrow \frac{\varepsilon}{32r \ln(2/\delta_p)}$, $\delta_a \leftarrow \frac{\varepsilon}{64 \ln(2/\delta_p)}$, $\varepsilon_H \leftarrow \delta_a$, $k \leftarrow \left\lceil \frac{1}{2\varepsilon_H^2} \ln\left(\frac{2}{\delta}\right) \right\rceil$.
- 7: **for** i = 1 ... k **do**
- 8: Perform the Hadamard test on $\mathsf{Samplize}_{\delta_a}(\mathsf{von}_{\mathsf{Neumann_subroutine}}(\delta_p, \varepsilon_p, \delta_Q))[\rho]$ ($\delta_a\text{-close}$ to a unitary block-encoding of $-\ln(\rho)$ using $\widetilde{O}(1/\delta_p^2\delta_a)$ samples of ρ) and ρ . Let $X_i \in \{0,1\}$ be the outcome.
- 9: end for
- 10: $\widetilde{S} \leftarrow 4(2\sum_{i \in [k]} X_i/k 1) \ln(2/\delta_p) \ln(2) \approx -\operatorname{tr}(\rho \ln(\rho)) = S(\rho).$
- 11: return \widetilde{S} .

Time-Efficient Quantum Entropy Estimators

Sample (and time) complexity of Algorithm 1:

$$k \cdot \widetilde{O}(1/\delta_p^2 \delta_a) = \widetilde{O}(N^2/\varepsilon^5).$$

Theorem 3

Algorithm 1 estimates the von Neumann entropy to precision ε with sample and time complexity $\widetilde{O}(N^2/\varepsilon^5)$.

Moreover, inspired by the quantum query algorithm for estimating the α -Rényi entropy of probability distributions in [Li and Wu, *IEEE Trans. Inf. Theory* 2019], we further have:

Theorem 4

We can estimate the quantum α -Rényi entropy of quantum states to precision ε with sample and time complexity $\widetilde{O}(N^{4/\alpha-2}/\varepsilon^{1+4/\alpha})$ for $0<\alpha<1$ and $\widetilde{O}(N^{4-2/\alpha}/\varepsilon^{3+2/\alpha})$ for $\alpha>1$.

Step 1. Density matrix exponentiation.

[Lloyd, Mohseni, and Rebentrost, *Nat. Phys.* 2014] [Kimmel, Lin, Low, Ozols, and Yoder, *npj Quantum Inf.* 2017]

Theorem 5 (Density matrix exponentiation)

We can implement a quantum channel ${\mathcal E}$ such that

$$\|\mathcal{E} - e^{-i\rho t}\|_{\diamond} \le \delta,$$

using $O(t^2/\delta)$ samples of ρ .

Step 2. Quantum singular value transformation.

[Gilyén, Su, Low, and Wiebe, STOC 2019]

By implementing the logarithm of unitaries, we can transform

$$e^{-i
ho}
ightarrowegin{bmatrix}
ho & * \ * & * \end{bmatrix}$$

Step 2. Quantum singular value transformation.

[Gilyén, Su, Low, and Wiebe, STOC 2019]

By implementing the logarithm of unitaries, we can transform

$$e^{-i
ho}
ightarrowegin{bmatrix}
ho & * \ * & * \end{bmatrix}$$

Theorem 6 ([Gilyén and Poremba, TQC 2022])

We can implement a quantum channel $\mathcal E$ such that there is a unitary operator U that is a block-encoding of ρ and

$$\|\mathcal{E} - \mathcal{U}\|_{\diamond} \le \delta,$$

using $\widetilde{O}(1/\delta)$ samples of ρ .

Step 3. By generalizing the quantum sample-to-query lifting theorem [Wang and Zhang, 2023], we have the following construction.

Optimality of Samplizer

We can also show that the implementation of the samplizer is optimal only up to polylogarithmic factors, by combining two prior results:

- Sample lower bound for sample-based Hamiltonian simulation.
 [Kimmel, Lin, Low, Ozols, and Yoder, npj Quantum Inf. 2017]
- Optimal quantum query algorithm for Hamiltonian simulation.
 [Gilyén, Su, Low, and Wiebe, STOC 2019]

Theorem 7

Any samplizer requires sample complexity $\Omega(Q^2/\delta)$.

Open Problems

• The sample complexity of the samplizer is shown to be $\Theta(Q^2/\delta)$. Can we make it tighter, improving the logarithmic factors?

Open Problems

- The sample complexity of the samplizer is shown to be $\Theta(Q^2/\delta)$. Can we make it tighter, improving the logarithmic factors?
- All of the existing quantum estimators for von Neumann entropy have sample complexity $\widetilde{O}(N^2)$, while the best known sample lower bound is only $\Omega(N)$ as suggested by [O'Donnell and Wright, STOC 2015, Comm. Math. Phys. 2021].

Open Problems

- The sample complexity of the samplizer is shown to be $\Theta(Q^2/\delta)$. Can we make it tighter, improving the logarithmic factors?
- All of the existing quantum estimators for von Neumann entropy have sample complexity $O(N^2)$, while the best known sample lower bound is only $\Omega(N)$ as suggested by [O'Donnell and Wright, STOC 2015, Comm. Math. Phys. 2021].
 - Can we show a matching lower bound $\Omega(N^2)$?
- Can we obtain new quantum sample algorithms for other problems of interest through the samplizer?

Thank You!