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2-Morita Equivalent Condensable Algebras and Domain

walls in 2d Topological Orders
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Primer [Kitaev06, Bais-Slingerland-Haaker09, Davydov10, Kitaev-Kong12, Davydov-Müger-Nikshych-Ostrik13, Kong14]
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Motivation: classify 2-Morita equivalent Ai
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• A 2d anomaly-free topological order can be described by a unitary modular tensor category
(MTC) C (with a central charge c).

• A 2d condensable (indecomposable commutative separable) algebra A ∈ C can be condensed to
create new topological order, described by the category CA

loc.

• Anyons that are confined from going to the condensed phase form a 1d domain wall described by
a fusion category CA.

• A 1d condensable algebra B ∈ CA can be condensed to create another domain wall B(CA)B .
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Invertible domain walls can appear in a 2d topological order, which are classified by the group Aut⊗
br(C)

of braided auto-equivalence. In the condensed phase we distinguish two kinds of invertible walls:

• Φ is induced from the auto-equivalences Φ′ in the original phase;

• Φφ is induced from the algebra automorphisms of 2d condensable algebra A1.

∼
ϕ

AWe denote the first situation by A1
2−Morita

A2 in which ϕ : Cloc
1

∼−→ CA
loc

2
serves as an interchange of

anyons between CA
loc

1
and CA

loc
2
. All gapped domain walls (1 codimensional defects) within a 2d

A1

topological order C can be classified by (A1, A2, ϕ) in the sense that CA1 ⊠Cloc Φ⊠Cloc
A2

CA2 ≃ BCB .
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Zl(B) ≃ A1
2−Morita∼

ϕ
A2 ≃ Zr(B)

Theorem (Based on [Fröhlich-Fuchs-Runkel-Schweigert 06])

The triples (A1, A2, ϕ) in C are classified by (1-Morita classes of) indecomposable separable algebras

Bi in C, in which A1
∼= Zl(Bi) and A2

∼= Zr(Bi) represent the left and right centers of Bi.

CA
loc

1
≃ CA

loc
2C C

CA1 CA2

fuse

open

BCB

BA1

C C

Theorem (Based on [Davydov-Nikshych-Ostrik 12])

We have BCB ≃ CZl(B) ⊠C
Z
loc

(l B)
Φ⊠Cloc

Zr(B)
CZr(B) where Φ is given by an equivalence of MTCs

Cloc
Zl(B)

∼−→ CZ
loc

r(B).

Φ
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Example: 2d Toric code model TC := Z(VecZ2
) H :=

∑
v(1− Av) +

∑
p(1− Bp)

v

p

1
2

Eg, we can add a local trap∑ Av0,0 + Bp 1
2
,− ∑to the original Hamiltonian:

1
2

H+ Av0,0 + Bp 1
2
,−

= v ̸=v0,0
(1− Av) + p̸=p 1

2
,− 1

2

(1− Bp) + 2

2
,− 1

2

The new ground state subspace of is 4-fold degenerate, which can be

distinguished by the eigenvalues of Av0,0 = ±1 and Bp 1 = ±1

The topological excitation generated by the local trap is 1⊕ e⊕m⊕ f .

Lattice realizations of 1d condensable algebra Bi locally.

Condensing Bi in TC is equivalent to removing these thick edges for all k along the neighborhood of column 0.

1

1

(0, 0)

1⊕ f

C− 1
2
,− 1

2
+ D 1

2
,0

1⊕ e

Av0,0

1⊕m

Bp 1
2
,− 1

2

1⊕ e⊕m⊕ f

Av0,0 + Bp 1
2
,− 1

2

1⊕m⊕ e⊕ f , ω

Bp− 1
2
,− 1

2

+ Av0,0
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left center right center 2d condensation

m

e

TCZl(B5) ≃ VecZ2 Rep(Z2) ≃ TCZr(B5)1⊕ e ≃ Zl(B5) Zr(B5) ≃ 1⊕m

V
ec

Hwall = H+
∑
k
Av0,k +

∑
k
Bp 1

2
,k− 1

2

=
∑

v ̸=v0,k

(1− Av) +
∑

p̸=p 1
2
,k− 1

2

(1− Bp) + 2N

B5 = 1⊕ e⊕m⊕ f located on the domain wall can not expand itself freely into the 2d bulk. However, its

sub-algebra 1⊕ e/1⊕m can be expanded to the left/right bulk. The half braiding βm,e = Id happening in the

left side of the wall is trivial, however, 1⊕ e is blocked from going to the right bulk due to the non-trivial

braiding βe,m = − Id in TC. Similarly, 1⊕m in this case is blocked from going to the right bulk.
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VecZ2 ⊠ Rep(Z2)≃ B5 TCB5



B5 = 1⊕ e⊕m⊕ f can be regarded as the tensor of two commutative algebras Ae := 1⊕ e and

Am := 1⊕m. Here we show that the subalgebra 1⊕ e ∼= Ae ⊗1 of B5
∼= Ae ⊗Am is the left center Zl(B5).

Indeed, the following diagram commutes:

(Ae ⊗1)⊗(Ae ⊗Am) (Ae ⊗Ae)⊗(1⊗Am)

Ae ⊗Am

(Ae ⊗Am)⊗(Ae ⊗1) (Ae ⊗Ae)⊗(Am ⊗1)

id

βAm,Ae

βAm,Ae

In addition, the following diagram does not commute,

(1⊗Am)⊗(Ae ⊗Am) (1⊗Ae)⊗(Am ⊗Am)

Ae ⊗Am

(Ae ⊗Am)⊗(1⊗Am) (Ae ⊗1)⊗(Am ⊗Am)

βAm,Ae

βAe,Am

βAm,1

since βAe,Am = id⊕ id⊕ id⊕ βe,m = id⊕ id⊕ id⊕−id and βAm,Ae = id. For a similar process, we have

Zr(B5) = 1⊕m. Therefore, Zl(B5) ∼= 1⊕ e
2−Morita∼ 1⊕m ∼= Zr(B5).

Rongge Xu 2-Morita Equivalent Condensable Algebras in Topological Orders 7 / 15

\ ⟳
⟳



C CCloc
A1

≃ Cloc
A2

CA1
CA2Φ

fuse

BCB

C C

foldZ(C)L

Z(C)

Theorem
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ϕ
L ∩ (C ⊠ 1) = A1

2−M∼orita
A2 = L ∩ (1 ⊠ C)
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2-Morita equivalent condensable algebras A1 
2∼−Morita 

A2 in C can also be classified by lagrangian algebras 
ϕ

(maximal 2d condensable algebras) Li in C ⊠ C ≃ Z(C). In particular, Li ≃ Z(Bi) [Kong-Runkel 09].

∼
ϕ

Given any pair of 2-Morita equivalent algebras A1
2−Morita

A2 in C, CA1 ⊠Cloc
A1

Φ⊠C
A
loc

2

CA2 is

equivalent to Z(C)L as monoidal C-C-bimodule for some lagrangian algebra L ∈ Z(C).



For example, by intersecting 11⊕me⊕ em⊕ f f ∈ TC⊠ TC with TC⊠1/1⊠ TC, we obtain 1
2−Morita∼

ϕ
1;

similarly, starting from 11⊕ e1⊕ 1m⊕ em, we obtain 1⊕ e
2−Morita∼ 1⊕m.

H F
E2 condensable algebras

in TC

Condensed phase

TCloc
A

Domain walls Total: 6

Z2 Z2 1⊕m

Vec VecTC TC

2 2

non-invertible:

2× 2 = 4{e} {e} 1⊕ e

TC TC

2

Z2 {e} 1 TC invertible: 2
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Bi ∈ TC Zl(Bi)/Zr(Bi) Domain wall Lagrangian algebras Li ∈ TC⊠ TC

1 1/1 trivial wall 11⊕ ee⊕mm⊕ f f

1⊕ f 1/1 e−m exchange 11⊕me⊕ em⊕ f f

1⊕ e 1⊕ e/1⊕ e VecZ2
⊠VecZ2

11⊕ e1⊕ 1e⊕ ee

1⊕m 1⊕m/1⊕m Rep(Z2)⊠Rep(Z2) 11⊕m1⊕ 1m⊕mm

1⊕ e⊕m⊕ f 1⊕ e/1⊕m VecZ2
⊠Rep(Z2) 11⊕ e1⊕ 1m⊕ em

1⊕ e⊕m⊕ f , ω 1⊕m/1⊕ e Rep(Z2)⊠VecZ2
11⊕m1⊕ 1e⊕me
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Main results [Fröhlich-Fuchs-Runkel-Schweigert06, Kong-Runkel09, Davydov10, Davydov-Nikshych-Ostrik12]:

We give a complete interplay between E1 condensable algebras in C, 2-Morita equivalent E2 

condensable algebras in C, and lagrangian algebras in C ⊠ C.
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Using these equivalences, we can classify all indecomposable gapped domain walls within a topological order, 
especially in Kitaev quantum double models described by Z(VecG) [Kitaev03, Davydov10].

Results of Z(VecZ4 ) := QD(Z4)

H F
Condensable algebras

in QD(Z4)

Condensed phase

QD(Z4)locA

Domain walls Total: 22

{e} {e}
Vec VecQD(Z4) QD(Z4)

3 3

non-invertible:

3× 3 = 9
Z2 Z2

1⊕ e⊕ e2 ⊕ e3

1⊕ e2 ⊕m2 ⊕ f2

Z4 Z4 1⊕m⊕m2 ⊕m3

DS DSQD(Z4) QD(Z4)Z4 Z2 1⊕ f2 non-invertible: 1

Z4 Z2 1⊕m2

TC TCQD(Z4) QD(Z4)

2

2 2

Z2 {e} 1⊕ e2
non-invertible:

2× 2× 2 = 8

QD(Z4)
QD(Z4) QD(Z4)

4

Z4 {e} 1 invertible: 4
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Results of Z(VecS3 ) := QD(S3)

H F
Condensable algebras

in QD(S3)

Condensed phase

QD(S3)A
loc Domain walls Total: 28

S3 S3 A⊕ F⊕D

Vec VecQD(S3) QD(S3)

4 4

non-invertible:

4× 4 = 16

A3 A3 A⊕B⊕ 2F

C2 C2 A⊕C⊕D

{e} {e} A⊕B⊕ 2C

S3 A3 A⊕ F

TC TCQD(S3) QD(S3)

2

2 2

non-invertible:

2× 2× 2 = 8C2 {e} A⊕C

QD(Z3)QD(S3) QD(S3)

4

1 1

A3 {e} A⊕B QD(Z3)
non-invertible:

4/2 = 2

QD(S3) QD(S3)

2

S3 {e} A QD(S3) invertible: 2



Recall that a 2d condensable algebra A in C may have non-trivial algebra automorphisms φ that leads to a

braided autoequivalence in Cloc
A . This kind of Φφ does not lead to a new gapped domian wall in C after folding.

Condensable algebras

in Z(Is)

Condensed phase

Z(Is)locA

Domain walls Total: 3

Vec VecZ(Is) Z(Is)

1 1

AL := (1 ⊠ 1)⊕ (ψ ⊠ ψ)⊕ (σ ⊠ σ) non-invertible: 1

TC TCZ(Is) Z(Is)

1 1

2

A2 := (1 ⊠ 1)⊕ (ψ ⊠ ψ)
non-invertible:

2/2 = 1

Z(Is)
Z(Is) Z(Is)

1

A1 := 1 ⊠ 1 invertible: 1

For example, double Ising topological order has only three distinguishable gapped domain walls. Although TC

has an e−m exchange domain wall, Z(Is)A2
⊠TC Z(Is)A2

is the unique domain wall associated to the 2-Morita

class (1⊠1)⊕ (ψ⊠ψ).
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This is due to the e-m exchange in Z(Is)locA2
≃ TC is induced by the non-trivial algebra automorphism φ of A2:

(1 ⊠ 1)⊕ (ψ ⊠ ψ)
1⊕−1−−−−→ (1 ⊠ 1)⊕ (ψ ⊠ ψ)

The obvious inclusion i : A2 ↪→ AL determines a 2-step condensation process. (1⊠ 1)⊕ (ψ ⊠ψ) corresponds to
1 ∈ TC and the component (σ ⊠ σ) corresponds to e (or m, depends on the convention). So AL becomes the

lagrangian algebra 1⊕ e in TC. After composing i : A2 ↪→ AL with φ, we obtain a new two step condensation

i′ : A2 ↪→ AL. The component (1 ⊠ 1)⊕ (ψ ⊠ ψ) is invariant and still corresponds to 1, but the component

(σ ⊠ σ) becomes (σ ⊠ σ)tw, which corresponds to m now. Hence, AL has two incarnations 1⊕m and 1⊕ e in

TC under this condensation process.

Z(Is)A2

Z(Is)

Z(Is)

Z(Is)AL

TC1⊕e

TC1⊕m

TC

e − m exchange

fuse
A2

φ
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• The e−m exchange domain wall in QD(Z3) is induced from the C−F exchange domain wall in QD(S3).

• 1− 2 exchange domain wall is induced from the algebra automorphism φ : A⊕B −1−−⊕−−1→ A⊕B.

C 7→ e Ctw 7→ e2

F 7→ m Ftw 7→ m2

A⊕B 7→ 1

QD(S3)A
loc

⊕B
∼−→ QD(Z3)

Similarly, for QD(S3),

Note that QD(Z3) has two gapped boundaries Rep(Z3) and VecZ3
obtained by condensing 1⊕m⊕m2 and

1⊕ e⊕ e2, in which 1− 2 exchange acts trivially on these two lagrangian algebras. Extending these two

lagrangian algebras back to QD(S3), we obtain A⊕B⊕ 2F and A⊕B⊕ 2C which generate VecS
F
3
and

VecS3
respectively. φ in this case does not generate more gapped boundaries for the condensed phase.

QD(S3)A⊕B

QD(S3) QD(S3)

VecS3

VecS
F
3

Rep(Z3)

VecZ3

QD(Z3)

e − m

1 − 2

C − F C − Ffuse

φ A ⊕ B
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