# 2-Morita Equivalent Condensable Algebras and Domain walls in 2d Topological Orders

Rongge Xu

Shenzhen-Nagoya Workshop on Quantum Science 2024

September 20, 2024

Based on [arXiv: 2403.19779], a joint work with Holiverse Yang

#### Primer [Kitaev06, Bais-Slingerland-Haaker09, Davydov10, Kitaev-Kong12, Davydov-Müger-Nikshych-Ostrik13, Kong14]

- A 2d anomaly-free topological order can be described by a unitary modular tensor category (MTC)  $\mathcal{C}$  (with a central charge c).
- A 2d condensable (indecomposable commutative separable) algebra  $A \in \mathcal{C}$  can be condensed to create new topological order, described by the category  $\mathcal{C}_A^{loc}$ .
- Anyons that are confined from going to the condensed phase form a 1d domain wall described by a fusion category  $\mathcal{C}_A$ .
- A 1d condensable algebra  $B \in \mathcal{C}_A$  can be condensed to create another domain wall  $_B(\mathcal{C}_A)_B$ .



$$\mathbb{C}_{A_1}^{loc} \simeq \mathbb{C}_{A_2}^{loc}$$
 $\updownarrow$ 
 $A_1 \xrightarrow{2-Morita} A_2$ 

Motivation: classify 2-Morita equivalent  $A_i$ 



Invertible domain walls can appear in a 2d topological order, which are classified by the group  $\mathcal{A}ut_{\otimes}^{\mathrm{br}}(\mathcal{C})$  of braided auto-equivalence. In the condensed phase we distinguish two kinds of invertible walls:

- $\Phi$  is induced from the auto-equivalences  $\Phi'$  in the original phase;
- $\Phi_{\varphi}$  is induced from the algebra automorphisms of 2d condensable algebra  $A_1$ .

We denote the first situation by  $A_1 \overset{2-Morita}{\phi} A_2$  in which  $\phi: \mathcal{C}^{loc}_{A_1} \overset{\sim}{\to} \mathcal{C}^{loc}_{A_2}$  serves as an interchange of anyons between  $\mathcal{C}^{loc}_{A_1}$  and  $\mathcal{C}^{loc}_{A_2}$ . All gapped domain walls (1 codimensional defects) within a 2d topological order  $\mathcal{C}$  can be classified by  $(A_1,A_2,\phi)$  in the sense that  $\mathcal{C}_{A_1} \boxtimes_{\mathcal{C}^{loc}_{A_2}} \Phi \boxtimes_{\mathcal{C}^{loc}_{A_2}} \mathcal{C}_{A_2} \simeq {}_B\mathcal{C}_B$ .

$$Z_l(B) \simeq A_1 \underbrace{\begin{matrix} B \\ \updownarrow \\ {}^{2-Morita} \end{matrix}}_{\phi} A_2 \simeq Z_r(B)$$

## Theorem (Based on [Fröhlich-Fuchs-Runkel-Schweigert 06])

The triples  $(A_1, A_2, \phi)$  in  $\mathbb C$  are classified by (1-Morita classes of) indecomposable separable algebras  $B_i$  in  $\mathbb C$ , in which  $A_1 \cong Z_l(B_i)$  and  $A_2 \cong Z_r(B_i)$  represent the left and right centers of  $B_i$ .



# Theorem (Based on [Davydov-Nikshych-Ostrik 12])

We have  ${}_B\mathcal{C}_B\simeq\mathcal{C}_{Z_l(B)}\boxtimes_{\mathcal{C}_{Z_l(B)}^{loc}}\Phi\boxtimes_{\mathcal{C}_{Z_r(B)}^{loc}}\mathcal{C}_{Z_r(B)}$  where  $\Phi$  is given by an equivalence of MTCs  $\mathcal{C}_{Z_l(B)}^{loc}\overset{\sim}{\to}\mathcal{C}_{Z_r(B)}^{loc}$ .

Example: 2d Toric code model  $\mathfrak{TC} := \mathfrak{Z}(\operatorname{Vec}_{\mathbb{Z}_2})$   $\mathsf{H} := \sum_v (1 - \mathsf{A}_v) + \sum_p (1 - \mathsf{B}_p)$ 



Eg, we can add a local trap  $\mathsf{A}_{v_{0,0}}+\mathsf{B}_{p_{\frac{1}{2},-\frac{1}{2}}}$  to the original Hamiltonian:

$$\mathsf{H} + \mathsf{A}_{v_{0,0}} + \mathsf{B}_{p_{\frac{1}{2},-\frac{1}{2}}} = \sum_{v \neq v_{0,0}} (1 - \mathsf{A}_{v}^{2})^{2} + \sum_{p \neq p_{\frac{1}{2},-\frac{1}{2}}} (1 - \mathsf{B}_{p}) + 2$$

The new ground state subspace of is 4-fold degenerate, which can be distinguished by the eigenvalues of  $A_{v_{0,0}}=\pm 1$  and  $B_{p_{\frac{1}{2},-\frac{1}{2}}}=\pm 1$ The topological excitation generated by the local trap is  $1\oplus e\oplus m\oplus f$ .

Lattice realizations of 1d condensable algebra  $B_i$  locally.



Condensing  $B_i$  in  $\mathfrak{IC}$  is equivalent to removing these thick edges for all k along the neighborhood of column 0.



$$\mathsf{H}_{wall} = \mathsf{H} + \sum_{k} \mathsf{A}_{v_{0,k}} + \sum_{k} \mathsf{B}_{p_{\frac{1}{2},k-\frac{1}{2}}} = \sum_{v \neq v_{0,k}} (1 - \mathsf{A}_v) + \sum_{p \neq p_{\frac{1}{2},k-\frac{1}{2}}} (1 - \mathsf{B}_p) + 2N$$

 $B_5=\mathbf{1}\oplus \mathbf{e}\oplus \mathbf{m}\oplus \mathbf{f}$  located on the domain wall can not expand itself freely into the 2d bulk. However, its sub-algebra  $\mathbf{1}\oplus \mathbf{e}/\mathbf{1}\oplus \mathbf{m}$  can be expanded to the left/right bulk. The half braiding  $\beta_{\mathbf{m},\mathbf{e}}=\mathrm{Id}$  happening in the left side of the wall is trivial, however,  $\mathbf{1}\oplus \mathbf{e}$  is blocked from going to the right bulk due to the non-trivial braiding  $\beta_{\mathbf{e},\mathbf{m}}=-\mathrm{Id}$  in  $\mathfrak{IC}$ . Similarly,  $\mathbf{1}\oplus \mathbf{m}$  in this case is blocked from going to the right bulk.

 $B_5=1\oplus e\oplus m\oplus f$  can be regarded as the tensor of two commutative algebras  $A_e:=1\oplus e$  and

 $A_{\mathbf{m}} := \mathbf{1} \oplus \mathbf{m}$ . Here we show that the subalgebra  $\mathbf{1} \oplus \mathbf{e} \cong A_{\mathbf{e}} \otimes \mathbf{1}$  of  $B_5 \cong A_{\mathbf{e}} \otimes A_{\mathbf{m}}$  is the left center  $Z_l(B_5)$ . Indeed, the following diagram commutes:

In addition, the following diagram does not commute,

$$(\mathbf{1} \otimes A_{\mathbf{m}}) \otimes (A_{\mathbf{e}} \otimes A_{\mathbf{m}}) \xrightarrow{\beta_{A_{\mathbf{m}}, A_{\mathbf{e}}}} (\mathbf{1} \otimes A_{\mathbf{e}}) \otimes (A_{\mathbf{m}} \otimes A_{\mathbf{m}})$$

$$\beta_{A_{\mathbf{e}}, A_{\mathbf{m}}} \qquad \qquad A_{\mathbf{e}} \otimes A_{\mathbf{m}}$$

$$(A_{\mathbf{e}} \otimes A_{\mathbf{m}}) \otimes (\mathbf{1} \otimes A_{\mathbf{m}}) \xrightarrow{\beta_{A_{\mathbf{m}}, A_{\mathbf{e}}}} (A_{\mathbf{e}} \otimes \mathbf{1}) \otimes (A_{\mathbf{m}} \otimes A_{\mathbf{m}})$$

since  $\beta_{A_{\mathbf{e}},A_{\mathbf{m}}} = \mathrm{id} \oplus \mathrm{id} \oplus \mathrm{id} \oplus \mathrm{id} \oplus \beta_{\mathbf{e},\mathbf{m}} = \mathrm{id} \oplus \mathrm{id} \oplus \mathrm{id} \oplus \mathrm{id} \oplus -\mathrm{id}$  and  $\beta_{A_{\mathbf{m}},A_{\mathbf{e}}} = \mathrm{id}$ . For a similar process, we have  $Z_r(B_5) = \mathbf{1} \oplus \mathbf{m}$ . Therefore,  $Z_l(B_5) \cong \mathbf{1} \oplus \mathbf{e}^{2-Morita} \mathbf{1} \oplus \mathbf{m} \cong Z_r(B_5)$ .

2-Morita equivalent condensable algebras  $A_1 \overset{2-Morita}{\smile} A_2$  in  ${\mathfrak C}$  can also be classified by lagrangian algebras (maximal 2d condensable algebras)  $L_i$  in  ${\mathfrak C} \boxtimes \overline{{\mathfrak C}} \simeq {\mathfrak Z}({\mathfrak C})$ . In particular,  $L_i \simeq Z(B_i)$  [Kong-Runkel 09].



## **Theorem**

Given any pair of 2-Morita equivalent algebras  $A_1 \overset{2-Morita}{\smile} A_2$  in  $\mathbb{C}$ ,  $\mathbb{C}_{A_1} \boxtimes_{\mathbb{C}^{loc}_{A_1}} \Phi \boxtimes_{\mathbb{C}^{loc}_{A_2}} \mathbb{C}_{A_2}$  is equivalent to  $\mathfrak{Z}(\mathbb{C})_L$  as monoidal  $\mathbb{C}$ - $\mathbb{C}$ -bimodule for some lagrangian algebra  $L \in \mathfrak{Z}(\mathbb{C})$ .

For example, by intersecting  $1\overline{1} \oplus m\overline{e} \oplus e\overline{m} \oplus f\overline{f} \in \mathfrak{IC} \boxtimes \overline{\mathfrak{IC}}$  with  $\mathfrak{IC} \boxtimes \overline{1}/1 \boxtimes \overline{\mathfrak{IC}}$ , we obtain  $1 \overset{2-Morita}{\phi} 1$ ; similarly, starting from  $1\overline{1} \oplus e\overline{1} \oplus 1\overline{m} \oplus e\overline{m}$ , we obtain  $1 \oplus e \overset{2-Morita}{\phi} 1 \oplus m$ .

| $B_i \in \mathfrak{TC}$                                           | $Z_l(B_i)/Z_r(B_i)$                       | Domain wall                                                                     | Lagrangian algebras $L_i \in \mathfrak{TC} oxtimes \overline{\mathfrak{TC}}$                            |
|-------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1                                                                 | 1/1                                       | trivial wall                                                                    | ${f 1\overline 1} \oplus {f e}\overline {f e} \oplus {f m}\overline {f m} \oplus {f f} \overline {f f}$ |
| $1\oplus\mathbf{f}$                                               | 1/1                                       | $\mathbf{e}-\mathbf{m}$ exchange                                                | ${f 1\overline 1} \oplus {f m\overline e} \oplus {f e} \overline{f m} \oplus {f f}$                     |
| $1 \oplus \mathbf{e}$                                             | $1 \oplus \mathbf{e}/1 \oplus \mathbf{e}$ | $\operatorname{Vec}_{\mathbb{Z}_2} \boxtimes \operatorname{Vec}_{\mathbb{Z}_2}$ | ${f 1}\overline{f 1}\oplus {f e}\overline{f 1}\oplus {f 1}\overline{f e}\oplus {f e}\overline{f e}$     |
| $1 \oplus \mathbf{m}$                                             | $1 \oplus \mathbf{m}/1 \oplus \mathbf{m}$ | $\operatorname{Rep}(\mathbb{Z}_2) \boxtimes \operatorname{Rep}(\mathbb{Z}_2)$   | ${f 1}\overline{f 1}\oplus {f m}\overline{f 1}\oplus {f 1}\overline{f m}\oplus {f m}\overline{f m}$     |
| $1 \oplus \mathbf{e} \oplus \mathbf{m} \oplus \mathbf{f}$         | $1 \oplus \mathbf{e}/1 \oplus \mathbf{m}$ | $\operatorname{Vec}_{\mathbb{Z}_2} \boxtimes \operatorname{Rep}(\mathbb{Z}_2)$  | ${f 1}\overline{f 1}\oplus {f e}\overline{f 1}\oplus {f 1}\overline{f m}\oplus {f e}\overline{f m}$     |
| $1 \oplus \mathbf{e} \oplus \mathbf{m} \oplus \mathbf{f}, \omega$ | $1 \oplus m/1 \oplus e$                   | $\operatorname{Rep}(\mathbb{Z}_2) \boxtimes \operatorname{Vec}_{\mathbb{Z}_2}$  | ${f 1}\overline{f 1}\oplus {f m}\overline{f 1}\oplus {f 1}\overline{f e}\oplus {f m}\overline{f e}$     |

| Н                      | F                      | $E_2$ condensable algebras in $\operatorname{TC}$                        | Condensed phase $\mathfrak{T}\mathcal{C}^{loc}_A$ | Domain walls | Total: 6                         |
|------------------------|------------------------|--------------------------------------------------------------------------|---------------------------------------------------|--------------|----------------------------------|
| $\mathbb{Z}_2$ $\{e\}$ | $\mathbb{Z}_2$ $\{e\}$ | $egin{aligned} 1 \oplus \mathbf{m} \\ 1 \oplus \mathbf{e} \end{aligned}$ | Vec                                               | TC Vec TC    | non-invertible: $2 \times 2 = 4$ |
| $\mathbb{Z}_2$         | {e}                    | 1                                                                        | TC                                                | Te   Te      | invertible: 2                    |

#### Main results [Fröhlich-Fuchs-Runkel-Schweigert06, Kong-Runkel09, Davydov10, Davydov-Nikshych-Ostrik12]:

We give a complete interplay between  $E_1$  condensable algebras in  $\mathcal{C}$ , 2-Morita equivalent  $E_2$  condensable algebras in  $\mathcal{C}$ , and lagrangian algebras in  $\mathcal{C} \boxtimes \overline{\mathcal{C}}$ .



Using these equivalences, we can classify all indecomposable gapped domain walls within a topological order, especially in Kitaev quantum double models described by  $\Im(\mathrm{Vec}_G)$  [Kitaev03, Davydov10].

Results of  $\mathfrak{Z}(\operatorname{Vec}_{\mathbb{Z}_4}) := \operatorname{QD}(\mathbb{Z}_4)$ 

| Н                                     | F                                     | Condensable algebras in $\mathrm{QD}(\mathbb{Z}_4)$                                                                                                                                                                          | Condensed phase $\mathrm{QD}(\mathbb{Z}_4)_A^{loc}$ | Domain walls                                                                                                                                                                       | Total: 22                                 |
|---------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| $\{e\}$ $\mathbb{Z}_2$ $\mathbb{Z}_4$ | $\{e\}$ $\mathbb{Z}_2$ $\mathbb{Z}_4$ | $ \begin{array}{c} 1 \oplus \mathbf{e} \oplus \mathbf{e}^2 \oplus \mathbf{e}^3 \\ 1 \oplus \mathbf{e}^2 \oplus \mathbf{m}^2 \oplus \mathbf{f}^2 \\ 1 \oplus \mathbf{m} \oplus \mathbf{m}^2 \oplus \mathbf{m}^3 \end{array} $ | Vec                                                 | $\operatorname{QD}(\mathbb{Z}_4)$ $\operatorname{Vec}$ $\operatorname{QD}(\mathbb{Z}_4)$                                                                                           | non-invertible: $3 \times 3 = 9$          |
| $\mathbb{Z}_4$                        | $\mathbb{Z}_2$                        | $1\oplus\mathbf{f}^2$                                                                                                                                                                                                        | DS                                                  | $\operatorname{QD}(\mathbb{Z}_4)$ DS $\operatorname{QD}(\mathbb{Z}_4)$                                                                                                             | non-invertible: 1                         |
| $\mathbb{Z}_4$ $\mathbb{Z}_2$         | $\mathbb{Z}_2$ $\{e\}$                | $egin{aligned} 1 \oplus \mathbf{m}^2 \ 1 \oplus \mathbf{e}^2 \end{aligned}$                                                                                                                                                  | те                                                  | $\left  \operatorname{QD}(\mathbb{Z}_4) \right  \left  \begin{array}{c} 2 \\ \vdots \\ \mathbb{T}_{\mathbb{C}} \\ \vdots \\ 2 \end{array} \right  \operatorname{QD}(\mathbb{Z}_4)$ | non-invertible: $2 \times 2 \times 2 = 8$ |
| $\mathbb{Z}_4$                        | $\{e\}$                               | 1                                                                                                                                                                                                                            | $\mathrm{QD}(\mathbb{Z}_4)$                         | $\begin{array}{c c} 4 \\ \downarrow \\ \mathrm{QD}(\mathbb{Z}_4) & \mathrm{QD}(\mathbb{Z}_4) \\ \downarrow \\ \downarrow \end{array}$                                              | invertible: 4                             |

# Results of $\mathfrak{Z}(\operatorname{Vec}_{S_3}) := \operatorname{QD}(S_3)$

| H                         | F                         | Condensable algebras in $\mathrm{QD}(S_3)$                                                                                                                                                                                           | Condensed phase $\mathrm{QD}(S_3)_A^{loc}$ | Domain walls                                                                                                                                                                                                  | Total: 28                                 |
|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| $S_3$ $A_3$ $C_2$ $\{e\}$ | $S_3$ $A_3$ $C_2$ $\{e\}$ | $egin{aligned} \mathbf{A} \oplus \mathbf{F} \oplus \mathbf{D} \\ \mathbf{A} \oplus \mathbf{B} \oplus 2\mathbf{F} \\ \mathbf{A} \oplus \mathbf{C} \oplus \mathbf{D} \\ \mathbf{A} \oplus \mathbf{B} \oplus 2\mathbf{C} \end{aligned}$ | Vec                                        | $\left  \operatorname{QD}(S_3) \right _4  \operatorname{Vec}  \left  \operatorname{QD}(S_3) \right _4$                                                                                                        | non-invertible: $4 \times 4 = 16$         |
| $S_3$ $C_2$               | $A_3$ $\{e\}$             | $\mathbf{A} \oplus \mathbf{F}$<br>$\mathbf{A} \oplus \mathbf{C}$                                                                                                                                                                     | те                                         | $\operatorname{QD}(S_3) \left  egin{array}{c} 2 \\ \downarrow \\ \uparrow \in \\ 2 \end{array} \right  \operatorname{QD}(S_3) \left  \begin{array}{c} 2 \\ \downarrow \\ \downarrow \\ 2 \end{array} \right $ | non-invertible: $2 \times 2 \times 2 = 8$ |
| $A_3$                     | $\{e\}$                   | $\mathbf{A}\oplus\mathbf{B}$                                                                                                                                                                                                         | $\mathrm{QD}(\mathbb{Z}_3)$                | $\operatorname{QD}(S_3) \left  \operatorname{QD}_{\mathbb{Z}_3}^{4} \right  \operatorname{QD}(S_3)$                                                                                                           | non-invertible: $4/2 = 2$                 |
| $S_3$                     | {e}                       | A                                                                                                                                                                                                                                    | $\mathrm{QD}(S_3)$                         | $\begin{array}{c c}2\\ \\ QD(S_3) & QD(S_3)\end{array}$                                                                                                                                                       | invertible: 2                             |

Recall that a 2d condensable algebra A in  $\mathcal C$  may have non-trivial algebra automorphisms  $\varphi$  that leads to a braided autoequivalence in  $\mathcal C^{loc}_A$ . This kind of  $\Phi_\varphi$  does not lead to a new gapped domian wall in  $\mathcal C$  after folding.

| Condensable algebras in $\mathfrak{Z}(\Im s)$                                                                           | Condensed phase $\mathfrak{Z}(\mathfrak{I}s)_A^{loc}$ | Domain walls                                                                                                                                | Total: 3                  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| $A_L := (1 \boxtimes \overline{1}) \oplus (\psi \boxtimes \overline{\psi}) \oplus (\sigma \boxtimes \overline{\sigma})$ | Vec                                                   | $\mathfrak{Z}(\mathfrak{I}s)$ Vec $\mathfrak{Z}(\mathfrak{I}s)$                                                                             | non-invertible: 1         |
| $A_2:=(1oxtimes\overline{1})\oplus (\psioxtimes\overline{\psi})$                                                        | тс                                                    | $\mathfrak{Z}(\mathfrak{I}s) \left  egin{array}{c} 2 \\ \mathfrak{I} \in \mathfrak{C} \\ 1 \end{array} \right  \mathfrak{Z}(\mathfrak{I}s)$ | non-invertible: $2/2 = 1$ |
| $A_1:=1oxtimes\overline{1}$                                                                                             | $\mathfrak{Z}(\Im s)$                                 | $3(\Im s) \stackrel{ }{\downarrow} 3(\Im s)$                                                                                                | invertible: 1             |

For example, double Ising topological order has only three distinguishable gapped domain walls. Although  $\mathfrak{IC}$  has an  $\mathbf{e} - \mathbf{m}$  exchange domain wall,  $\mathfrak{J}(\mathfrak{I}s)_{A_2} \boxtimes_{\mathfrak{IC}} \mathfrak{J}(\mathfrak{I}s)_{A_2}$  is the unique domain wall associated to the 2-Morita class  $(\mathbf{1} \boxtimes \overline{\mathbf{1}}) \oplus (\psi \boxtimes \overline{\psi})$ .

This is due to the e-m exchange in  $\mathfrak{Z}(\Im s)_{A_2}^{loc} \simeq \Im \mathcal{C}$  is induced by the non-trivial algebra automorphism  $\varphi$  of  $A_2$ :

$$(\mathbf{1}\boxtimes\overline{\mathbf{1}})\oplus(\psi\boxtimes\overline{\psi})\xrightarrow{\mathbf{1}\oplus-\mathbf{1}}(\mathbf{1}\boxtimes\overline{\mathbf{1}})\oplus(\psi\boxtimes\overline{\psi})$$

The obvious inclusion  $i:A_2\hookrightarrow A_L$  determines a 2-step condensation process.  $(\mathbf{1}\boxtimes \overline{\mathbf{1}})\oplus (\psi\boxtimes \overline{\psi})$  corresponds to  $\mathbf{1}\in \mathfrak{TC}$  and the component  $(\sigma\boxtimes \overline{\sigma})$  corresponds to  $\mathbf{e}$  (or  $\mathbf{m}$ , depends on the convention). So  $A_L$  becomes the lagrangian algebra  $\mathbf{1}\oplus \mathbf{e}$  in  $\mathfrak{TC}$ . After composing  $i:A_2\hookrightarrow A_L$  with  $\varphi$ , we obtain a new two step condensation  $i':A_2\hookrightarrow A_L$ . The component  $(\mathbf{1}\boxtimes \overline{\mathbf{1}})\oplus (\psi\boxtimes \overline{\psi})$  is invariant and still corresponds to  $\mathbf{1}$ , but the component  $(\sigma\boxtimes \overline{\sigma})$  becomes  $(\sigma\boxtimes \overline{\sigma})^{tw}$ , which corresponds to  $\mathbf{m}$  now. Hence,  $A_L$  has two incarnations  $\mathbf{1}\oplus \mathbf{m}$  and  $\mathbf{1}\oplus \mathbf{e}$  in  $\mathfrak{TC}$  under this condensation process.



Similarly, for 
$$QD(S_3)$$
,

$$\begin{array}{c} \mathrm{QD}(S_3)^{loc}_{\mathbf{A}\oplus\mathbf{B}} \xrightarrow{\sim} \mathrm{QD}(\mathbb{Z}_3) \\ \mathbf{A}\oplus\mathbf{B}\mapsto\mathbf{1} \\ \mathbf{C}\mapsto\mathbf{e} \qquad \mathbf{C}^{tw}\mapsto\mathbf{e}^2 \\ \mathbf{F}\mapsto\mathbf{m} \qquad \mathbf{F}^{tw}\mapsto\mathbf{m}^2 \end{array}$$

- The e-m exchange domain wall in  $QD(\mathbb{Z}_3)$  is induced from the C-F exchange domain wall in  $QD(S_3)$ .
- 1-2 exchange domain wall is induced from the algebra automorphism  $\varphi: \mathbf{A} \oplus \mathbf{B} \xrightarrow{1 \oplus -1} \mathbf{A} \oplus \mathbf{B}$ .

Note that  $\mathrm{QD}(\mathbb{Z}_3)$  has two gapped boundaries  $\mathrm{Rep}(\mathbb{Z}_3)$  and  $\mathrm{Vec}_{\mathbb{Z}_3}$  obtained by condensing  $\mathbf{1} \oplus \mathbf{m} \oplus \mathbf{m}^2$  and  $\mathbf{1} \oplus \mathbf{e} \oplus \mathbf{e}^2$ , in which 1-2 exchange acts trivially on these two lagrangian algebras. Extending these two lagrangian algebras back to  $\mathrm{QD}(S_3)$ , we obtain  $\mathbf{A} \oplus \mathbf{B} \oplus 2\mathbf{F}$  and  $\mathbf{A} \oplus \mathbf{B} \oplus 2\mathbf{C}$  which generate  $\mathrm{Vec}_{S_3}^{\mathbf{F}}$  and  $\mathrm{Vec}_{S_3}$  respectively.  $\varphi$  in this case does not generate more gapped boundaries for the condensed phase.

