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WHAT IS STRING FIELD THEORY, AND WHAT IS IT GOOD FOR?

• String theory amplitudes are obtained by summing up integrals on
moduli spaces of Riemann surfaces

• It is by definition perturbative and background dependent

• Q: Is it possible to construct an action, from which the string
amplitudes can be derived via Feynman diagram expasion?

• Such a theory is the second quantized theory of string theory, which is
called string field theory (SFT)
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WHAT IS STRING FIELD THEORY, AND WHAT IS IT GOOD FOR?

• During the last few decades, we have already developed complete
formulations for all the conventional string field theories (N = 0 and
N = 1; open, closed and heterotic)

• What were achieved:
1. Describing tachyon condensation (False vacuum)
2. Essentially field theoretic problems in perturbative thoery: mass

renormalization, D-instanton sector contribution, . . .
3. Carrying out CFT perturbation theory beyond leading order

(closely related to 1.)

• What is not done yet:
A fully non-perturbative formulation of string theory (By far still a

perturbative Batalin-Vilkovisky (BV) action around a saddle point!)
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THE PHYSICS OF CONDENSING TACHYON

• At open bosonic string vacuum (a spacetime-filling D25-brane), a
string state

Ψ = ∫ dk{ 1
√
α′
[T(k) + Aµ(k)aµ−1] c0 +

i
√

2
B(k)c0 +⋯} ∣0; k ⟩

• T(k): tachyon field with negative squared mass
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• T(k): tachyon field with negative squared mass

• Sen’s conjecture: the open string vacuum (D25-brane) decays into a
vinicity of D-branes, where there are no open strings (tachyon
vacuum)

– It was proven by constructing an analytic expression for this
“tachyon vacuum” (Schnabl, 05)



THE PHYSICS OF CONDENSING TACHYON

• Another kind of false vacuum: marginal deformation

• Background independence: String backgrounds↔ Classical
solutions to SFT↔Worldsheet CFT

• A deformation of worldsheet CFT can be represented by an operator of
conformal dimension one and it is called anmarginal operator

• Not every marginal operator represents a valid deformation, those
that do are called exactly marginal

• Exactly marginal operators are valid string backgrounds, therefore
they are solutions to the classical SFT equation of motion
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SFT ACTION

• Open

S[Ψ] =
(−1)deg(Ψ)

2
⟨Ψ,QΨ⟩ +

∞

∑
n=2

(−1)deg(Ψ)

n + 1
⟨Ψ,Mn(Ψ, . . . ,Ψ)⟩

deg(Ψ) = gr(Ψ) + 1,Ψ ∈H,Mn : H⊗n →H are A∞ products

• Closed

S[Ψ] =
(−1)deg(Ψ)

2
⟨Ψ, c−0QΨ⟩ +

∞

∑
n=2

(−1)deg(Ψ)

(n + 1)!
⟨Ψ, c−0 Ln(Ψ, . . . ,Ψ)⟩

deg(Ψ) = gr(Ψ),Ψ ∈ {Ψ ∈H ∣b−0Ψ = L
−

0Ψ = 0}, Ln : H∧n →H are L∞
products
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• k D(-1)-branes sitting on a stack of N D3-branes
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• k D(-1)-branes sitting on a stack of N D3-branes

• Field theoretically, this is a N = 4,SU(N) super Yang-Mills instanton
with winding number k

• But this is not exactly true: D-brane bound system is an approximated
string background, just like point-like instanton is an approximated
solution



TWIST FIELD IN OPEN THEORY: ADHM INSTANTON
• k D(-1)-branes sitting on a stack of N D3-branes

• The operator relevant here:

∆(z) = σ0
(z)σ1

(z)σ2
(z)σ3

(z),



TWIST FIELD IN OPEN THEORY: ADHM INSTANTON
• k D(-1)-branes sitting on a stack of N D3-branes

• σµ(z) is the twist field that change the boundary condition of strings
streching between different types of D-branes



TWIST FIELD IN OPEN THEORY: ADHM INSTANTON
• The twist fields can be made into an marginal operator

V(z) =
gYM
√
α′
c(z)
⎛

⎝

Auvµ ψµ wuj
α̇
∆Sα̇

w̄ivα̇S∆̄ ai jµψµ
⎞

⎠
(z)e−ϕ(z),

where u, v ∈ {1, . . . ,N} and i, j ∈ {1, . . . , k}.
• It satisfies QV = 0
• The full string field equation of motion

QΨ +M2(Ψ,Ψ) +M3(Ψ,Ψ,Ψ) +⋯ = 0

is satisfied only if we deform V

Ψ = V + (
ρ
√
α′
)
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ρ
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TWIST FIELD IN OPEN THEORY: ADHM INSTANTON
• At each order

QΨ0 = 0,V ≡ ρ
√
α′
Ψ0

QΨ1 +M2(Ψ0,Ψ0) = 0

QΨ2 +M2(Ψ0,Ψ1) +M2(Ψ1,Ψ0) +M3(Ψ0,Ψ0,Ψ0) = 0

⋯

Warning: Q is not invertible
• Sovable condition (P0 is a projector):

P0M2(Ψ0,Ψ0) = 0

P0 [M2(Ψ1,Ψ0) +M2(Ψ0,Ψ1) +M3(Ψ0 +Ψ0 +Ψ0)] = 0

⋯
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TWIST FIELD IN OPEN THEORY: ADHM INSTANTON

• For SU(2) group

Ac(1)µ = (
ρ
√
α′
)

2
(VAcµ ,Ψ1) = 2ρ2η̄cµν

(x − x0)
ν

(x − x0)4
,

which agrees with the ADHM construction (expanded for small ρ)

• The sovable condition gives

η̄
µν
a ([aµ,aν +

1
2
w̄α̇(σ̄µν)

α̇β̇w
β̇
]) = 0,

which is the well-known ADHM constraint



TWIST FIELD IN OPEN THEORY: ADHM INSTANTON

• For SU(2) group

Ac(1)µ = (
ρ
√
α′
)

2
(VAcµ ,Ψ1) = 2ρ2η̄cµν

(x − x0)
ν

(x − x0)4
,

which agrees with the ADHM construction (expanded for small ρ)

• The sovable condition gives

η̄
µν
a ([aµ,aν +

1
2
w̄α̇(σ̄µν)

α̇β̇w
β̇
]) = 0,

which is the well-known ADHM constraint



TWIST FIELD IN CLOSED THEORY: ORBIFOLD SINGULARITY

• Deformation is given by c̃cwβSβ∆w̃βS̃β∆̃e−ϕe−ϕ̃
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• Deformation is given by c̃cwβSβ∆w̃βS̃β∆̃e−ϕe−ϕ̃

• There is no constraint on the moduli (up to the third order)

• So we can takewα = w̄α = ( 1
√

2
, 1
√

2
)



TWIST FIELD IN CLOSED THEORY: ORBIFOLD SINGULARITY
• Deformation is given by c̃cwβSβ∆w̃βS̃β∆̃e−ϕe−ϕ̃

• Metric is given by

G(1)IJ̄ = (
ρ2

α′
)

2
(VGĪJ ,Ψ1) ∼

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2ik1̄k1̄ 2k1̄k1 −2ik1̄k0̄ −2k1̄k0
2k1̄k1 −2ik1k1 −2k0̄k1 2ik0k1
−2ik1̄k0̄ −2k0̄k1 2ik0̄k0̄ 2k0̄k0
−2k1̄k0 2ik0k1 2k0̄k0 −2ik0k0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠



TWIST FIELD IN CLOSED THEORY: ORBIFOLD SINGULARITY

• Deformation is given by c̃cwβSβ∆w̃βS̃β∆̃e−ϕe−ϕ̃

• Kähler form:ω = iGIJ̄dxI ∧ dxJ̄, computing dωwill give a
non-vanishing result



TWIST FIELD IN CLOSED THEORY: ORBIFOLD SINGULARITY

• Relation to the resolved space?

• Will there be contraints at higher order?



Thank you!


