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Abstract

Bayes’ rule, which is routinely used to update beliefs based on new
evidence, can be derived from a principle of minimum change. This
principle states that updated beliefs must be consistent with new data,
while deviating minimally from the prior belief. Here, we introduce a
quantum analog of the minimum change principle and use it to derive a
quantum Bayes’ rule by minimizing the change between two quantum
input-output processes, not just their marginals. This is analogous to
the classical case, where Bayes’ rule is obtained by minimizing sev-
eral distances between the joint input-output distributions. When the
change maximizes the fidelity, the quantum minimum change prin-
ciple has a unique solution, and the resulting quantum Bayes’ rule
recovers the Petz transpose map in many cases. This is work done in
collaboration with Ge Bai and Valerio Scarani.
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What is Bayesian inference?

And what is quantum Bayesian inference?
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what this talk is not about

philosophical debates (e.g., Bayesianism VS Frequentism, interpretations of QM such
as QBism, etc.)

we are postmodern Bayesians!
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what this talk is about

P (H|Do)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
P (H)

likelihood︷ ︸︸ ︷
P (Do|H)

P (Do)︸ ︷︷ ︸
prop. constant

This talk is about Bayes’ Rule and its “unreasonable pervasiveness” throughout science

The wrong answer: it is general because it is a trivial consequence of the law of total
probability, detailed balance, etc.

The correct question: why Bayes’ Rule provides a good update rule?
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possible justifications of the pervasiveness of Bayes’ Rule

“Consistency” arguments by De Finetti, (Harold) Jeffreys, Savage, and Cox.

(Richard) Jeffrey’s “probability kinematics” and Pearl’s “virtual evidence method”.
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parenthesis: the Bayes–Jeffrey–Pearl update

consider a classical discrete noisy channel P (i|x) and a prior γ(x) on the input

when the receiver observes a definite value io , (vanilla) Bayes’ Rule says that their

posterior should be updated to Rγ
P (x|io) :=

γ(x)P (io|x)
[Pγ](io)

but what if the observation is noisy and returns some p.d. σ(i) instead?

Theorem (Jeffrey 1965, Pearl 1988)
Given a channel P (i|x) and a prior γ(x), the result of a noisy observation σ(i) is updated
to

σ̃(x) :=
∑
i

Rγ
P (x|i) σ(i) .

Note: the usual Bayes’ Rule is recovered for σ(i) = δi,io .
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The problem with these derivations is that they are
based on axioms, which may appear compelling to some
but less so to others.

Alternative approach: can Bayes’ Rule be derived as the
(optimal, unique) solution to a concrete task?
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variational principles are nice

To avoid unwarranted bias and remain maximally non-
committal, the updated belief should be consistent with
the new information (the result of the observation), while
deviating as little as possible from the initial belief.
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formalization: the principle of minimum change

given channel P (i|x) and prior γ(x), construct the forward process
[P ⋆ γ](i, x) := P (i|x)γ(x)
given the new information as σ(i), consider the program

min
R

D(P ⋆ γ,R ⋆ σ) ,

where D(•, •) is a suitable information divergence, and the minimum is taken over
all channels R ≡ R(x|i)

Then, for many reasonable choices of D (e.g., the KL-divergence), it turns out that

argmin
R

D(P ⋆ γ,R ⋆ σ) = Rγ
P ,

where Rγ
P ≡ Rγ

P (x|i) =
[P⋆γ](i,x)
[Pγ](i)

is Bayes’ inverse.
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towards a quantum generalization

The minimum change principle is formulated using the joint input-output distributions.

Hence, the central idea is that the “change” to be minimized is the change relative to
the whole input-output stochastic process, not just its marginals.

But this is a problem in the quantum case...
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quantum joint i/o distributions

Given a channel E : A → B define:
the Choi operator: CE :=

∑
i,j E(|i⟩⟨j|)B ⊗ |i⟩⟨j|A

the joint i/o state: E ⋆ γ := (1B ⊗
√
γT
A)CE(1B ⊗

√
γT
A)

Note that:
TrB[E ⋆ γ] = γT

A

TrA[E ⋆ γ] = E(γ)B
when all operators are diagonal, we obtain the classical joint i/o probability
distribution
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the principle of minimum change: the quantum case
Given a channel E : A → B, a prior state γA some “new information” σB, consider the
program

min
R

D(E ⋆ γ, (R ⋆ σ)T ) ,

where the minimum is taken over channels R : B → A.

Theorem (arXiv:2410.00319, PRL to appear)
For E ⋆ γ > 0 and σ > 0, when the divergence is chosen to be the quantum fidelity
F(x, y) :=

∥∥√x
√
y
∥∥
1
,

argmax
R

F(E ⋆ γ, (R ⋆ σ)T ) = RE,γ,σ ,

where

RE,γ,σ(•) :=
√
γ E†

(
√
σ

1√√
σE(γ)

√
σ
(•)

1√√
σE(γ)

√
σ

√
σ

)
√
γ .
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some open questions

In general, when [E(γ), σ] ̸= 0 the dependence of the posterior RE,γ,σ(σ) on the new
data σ is not linear: bug or feature?

What happens when other divergences are used instead of the fidelity?

What about multi-partite situations, locality restrictions, ...?
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“Killer app”: quantum state inference (retrodiction)
from measurements outcomes
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motivation: von Neumann’s “other” entropy

von Neumann recognized that “his entropy” was not a good measure for
thermodynamic entropy, which should instead be a quantity relative to the observer’s
knowledge.

Modern version: observational entropy (OE)
For a density matrix ϱ and a positive operator-valued measure (POVM) P = {Pi}i

SP(ϱ) := −
∑
i

p(i) log
p(i)

V (i)
,

where p(i) := Tr[ϱ Pi] and V (i) := Tr[Pi].
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What is the meaning of OE?
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the fundamental bound
Umegaki relative entropy
For density matrices ϱ ⩾ 0 and γ > 0, the Umegaki relative entropy D(ϱ∥γ) is defined
as Tr[ϱ(log ϱ− log γ)]. We can thus write

SP(ϱ) = log d−D(P(ϱ)∥P(u)) ,

where P(•) :=
∑

i Tr[• Pi] |i⟩⟨i|, and u := d−11.

Theorem (NJP, 2023)
For any d-dimensional density matrix ϱ and any POVM P = {Pi}i,

S(ϱ̃P)− S(ϱ) ⩾ SP(ϱ)− S(ϱ)︸ ︷︷ ︸
D(ϱ∥u)−D(P(ϱ)∥P(u))

⩾ D(ϱ∥ϱ̃P) ,

where ϱ̃P :=
∑

i Tr[ϱ Pi]
Pi

Vi
.

In particular, log d ⩾ S(ϱ̃P) ⩾ SP(ϱ) ⩾ S(ϱ).
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OE tells us something about how much ϱ and ϱ̃P “differ”
from each other.

Hence, the question: what is the meaning of

ϱ̃P :=
∑
i

Tr[ϱ Pi]
Pi

Tr[Pi]
???
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Petz’s transpose/recovery map

Definition
Given a channel E and a prior state γ, the corresponding Petz’s transpose (or Petz’s
recovery) channel is defined as

Rγ
E(•) :=

√
γ E†

[
E(γ)−1/2 (•) E(γ)−1/2

]√
γ .

Fact: ϱ̃P is the state “recovered” from the measurement’s outcome
In terms of the measurement channel P(•) :=

∑
i Tr[Pi •] |i⟩⟨i|, it turns out that

ϱ̃P = [Ru
P ◦ P ](ϱ) =

1

d
P†
[
P(u)−1/2 P(ϱ) P(u)−1/2

]
.

(Note that in this case γ = u = d−11.)
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So, the real question is: what is the meaning of Petz’s
transpose map?
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Petz’s transpose map and quantum Bayes rule
Recall the form of the minimum change channel:

RE,γ,σ(•) :=
√
γ E†

(
√
σ

1√√
σE(γ)

√
σ
(•)

1√√
σE(γ)

√
σ

√
σ

)
√
γ .

Fact
Whenever [E(γ), σ] = 0, then RE,γ,σ ≡ RE,γ , i.e., Petz’s transpose map coincides with
the minimum change channel.

Since the measurement channel P is quantum-to-classical, ϱ̃P is the unique
retrodicted state that satisfies the minimum change principle.

Hence, the entropy difference (or observational deficit) SP(ϱ)− S(ϱ) measures the
amount of “irretrodictable information”.
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macroscopic = fully retrodictable

Definition (macroscopic states)
Recalling the fundamental bound SP(ϱ)− S(ϱ) ⩾ D(ϱ∥ϱ̃P) with ϱ̃P = [Ru

P ◦ P ](ϱ), we
say that a state ϱ is macroscopic w.r.t. measurement P and uniform prior u whenever
ϱ = ϱ̃P.

More generally, for non-uniform prior γ, we denote the set of macroscopic states as
Mγ

P := {ϱ : ϱ = [Rγ
P ◦ P ](ϱ)}.

Theorem (arXiv:2504.12738)
A state ϱ is in Mγ

P if and only if there exists a PVM Π = {Πj}j , with Πj =
∑

i µ(j|i)Pi ,
such that [Πi, γ] = 0, together with coefficients cj ⩾ 0, such that ϱ =

∑
j cjΠjγ .

Note that γ ∈ Mγ
P by construction.
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Which evolutions do not make retrodiction harder?

In other words: which evolutions do not increase
“irretrodictability”, i.e., “microscopicity”?
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macroscopic operations (idea)

Resource destroying map (RDM)
Recalling the form of macroscopic states ϱ =

∑
j cjΠjγ, the map

∆γ
P(•) :=

∑
j

Tr[Πj •]
Πjγ

Tr[Πjγ]

is such that ∆γ
P(σ) ∈ Mγ

P for all σ, while ϱ ∈ Mγ
P =⇒ ∆γ

P(ϱ) = ϱ.

RDM-covariant operations
A CPTP linear map N is macroscopic (RDM-covariant) whenever

N ◦∆γ
P = ∆γ

P ◦ N .

The above framework contains the case of coherence, i.e., Mγ
P = {diagonal states}, or

athermality, i.e., Mγ
P = {γ}.
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resolving the paradox of thermodynamic entropy increase in
closed (Hamiltonian) systems

let the initial state of the system at time t = t0 be a macrostate Mu
P ∋ ϱt0 ̸= u

its initial OE is as small as possible, i.e., it satisfies SP(ϱ
t0) = S(ϱt0); let’s see how it

changes in time

the system evolves unitarily, so that S(ϱt1) = S(Uϱt0U †) = S(ϱt0); however,

SP(ϱ
t1) = −

∑
i

Tr
[
Pi (Uϱt0U †)

]
log

Tr
[
Pi (Uϱt0U †)

]
Tr[Pi]

= −
∑
i

Tr
[
(U †PiU) ϱt0

]
log

Tr
[
(U †PiU) ϱt0

]
Tr[U †PiU ]

= SU†PU (ϱ
t0)

⩾ S(ϱt0) = SP(ϱ
t0)

summarizing: in general, SP(ϱ
t1) ⩾ SP(ϱ

t0) even in closed systems, with equality if and
only if Uϱt0U † ∈ Mu

P
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an “H-theorem” for OE

Theorem (PRR, 2025)
In a d-dimensional system, choose a state ϱ and a POVM P = {Pi}i with a finite number
of outcomes. Choose also a (small) value δ > 0. For a unitary operator U sampled at
random according to the Haar distribution, it holds:

PH

{
SP(UϱU †)

log d
⩽ (1− δ)

}
⩽

4

κ(P)
e−Cδκ(P)2d log d ,

where κ(P) = mini Tr[Pi u] and C ≈ 0.0018.

Remark. A similar statement holds for unitaries sampled from an approximate 2-design.

=⇒ in the eyes of the observer, the state of a randomly evolving system quickly becomes
indistinguishable from the maximally uniform one, regardless of the system’s initial state.
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entropy increase = lack of retrodictability (Watanabe’s thesis)

“The phenomenological onewayness of
temporal developments in physics is
due to irretrodictability, and not due to
irreversibility.”

Satosi Watanabe (1965)
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Conclusions
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take-home messages
1 we have derived a quantum analogue of Bayes rule, based on the principle of

minimum change
2 the quantum Bayes rule coincides with Petz’s transpose map for channels with

commutative output
3 this gives an operational meaning to the retrodicted quantum state inferred from

a measurement’s outcome
4 the difference between observational entropy and von Neumann entropy, i.e., the

observational deficit, quantifies the amount of irretrodictable information
5 the second law is a statement about the generic loss of retrodictability in time
6 irretrodictability (i.e., “microscopicity”) can be framed as a resource theory,

generalizing those of coherence and athermality

The End: Thank You!
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