Unitarity of Minimal Principal Series Representations

Kayue Daniel Wong (The Chinese University of Hong Kong, Shenzhen)

September 2025

Mathematical formulation of quantum mechanics

- Around 100 years ago, a mathematical formulation of quantum mechanics began to take shape.
- More precisely, a quantum mechanical system is described by a Hilbert space $(\mathcal{H}, \langle , \rangle)$ (inner product space + completeness) called **phase space**.
- Physical properties of the system can be described by self-adjoint (or **Hermitian) operators** $A: \mathcal{H} \to \mathcal{H}$.
- The eigenvalues λ of A ($\lambda \in \mathbb{R}$ since A is self-adjoint) give all possible measurements of its corresponding physical property.

Example

The (time independent) phase space corresponding to the hydrogen atom is

$$\mathcal{H}=L^2(\mathbb{R}^3)$$
.

Consider the **Schrödinger operator** $\widehat{H}: \mathcal{H} \to \mathcal{H}$. Eigenvalues of \widehat{H} give all energy levels of the atom. Write \mathcal{H}_{λ} as the λ -eigenspace of \widehat{H} (λ -eigenstates).

4 D > 4 A > 4 B > 4 B >

September 2025

Unitary representations of Lie groups

Definition

Let G be a real reductive Lie group (e.g. SO(3), $SL(2,\mathbb{R})$, U(p,q), $Sp(2n,\mathbb{R})$, ...). A **unitary representation** of G is a Hilbert space $(\mathcal{H}, \langle , \rangle)$ equipped with a continuous group homomorphism $\pi: G \to \mathcal{U}(\mathcal{H})$ satisfying:

$$\langle \pi(g)v, \pi(g)w \rangle = \langle v, w \rangle, \qquad (v, w \in \mathcal{H}).$$

- As an example, let G = SO(3) be the Lie group of 3×3 real orthogonal matrices, and $\mathcal{H} = L^2(\mathbb{R}^3)$ be the hydrogen atom model.
- For all $g \in G$ and $f \in \mathcal{H}$, let

$$[\pi(g)f](\mathbf{x}) := f(g^{-1}\mathbf{x}), \qquad \mathbf{x} \in \mathbb{R}^3.$$

This gives a unitary representation of SO(3) on \mathcal{H} .

• Indeed, $\pi(g)$ is related to the **angular momentum operator** of the hydrogen atom model.

Hydrogen atom and Lie algebra representation

• Moreover, $\pi(g)$ commutes with the Schrödinger operator \widehat{H} , i.e.

$$\pi(g) \circ \widehat{H} = \widehat{H} \circ \pi(g).$$

• It turns out that $\mathcal{H}=L^2(\mathbb{R}^3)$ can be decomposed into:

$$L^2(\mathbb{R}^3) = \widehat{\bigoplus}_i \mathcal{H}_{\lambda_i}$$
, with $\lambda_1 < \lambda_2 < \dots$ (the energy levels), where each \mathcal{H}_{λ_i} is a $(2n-1)$ -dimensional representation of $SO(3)$:

The unitary dual

We are interested in the following:

Question

Classify all unitary representations of a real reductive group G.

- It is well known that if (π, \mathcal{H}) is unitary, then it can be decomposed as a (completed) direct sum of irreducible representations $((\pi, \mathcal{H})$ is **irreducible** if the only *G*-invariant closed subspaces of \mathcal{H} are $\{0\}$ and \mathcal{H} only).
- Let K be a maximal compact subgroup of G, and $\mathfrak{g} = Lie(G) \otimes_{\mathbb{R}} \mathbb{C}$ is the complexification of the Lie algebra of G.
- By an old work of Harish-Chandra, the (functional analytic) problem of classifying irreducible unitary representations can be reduced to the (algebraic) problem of classifying all unitarizable, irreducible (\mathfrak{g},K) -modules.
- We denote the latter as \widehat{G} , the unitary dual of G.

Unitary representations of Lie groups

- The big question: Give a real reductive Lie group G, classify its unitary dual \widehat{G} .
- Here is a timeline on some **full** classification of \hat{G} :

The atlas program

National Science Foundation

• One of the many remarkable achievements between 1990's - 2020's in the unitary dual problem is the implementation of the atlas computer program:

cience

NEWS

Figure: The character formulas of irreducible representations for real split E_8 were completely computed in 2007, which gained a lot of media attention.

7/11

• In 2016, the is_unitary command was introduced in atlas, so that one can check whether a given irreducible representation is unitary or not.

market *WIRE*

• However, it does not give a self-included description of \hat{G} . As an analogy, one can write a computer program is_prime to check whether an integer n is prime or not. Yet it does not give a classification of all prime numbers.

Spherical Unitary Dual of Split Classical Groups

- Let G be a split reductive group (e.g. $G = O(n, n), O(n, n + 1), Sp(2n, \mathbb{R})$).
- Recall K is a maximal compact subgroup of G (e.g. $K = O(n) \times O(n)$, $O(n) \times O(n+1)$, U(n)).
- We are interested in classifying all irreducible, unitary representations of G with a K-fixed vector, i.e. the **spherical unitary dual** \widehat{G}_{sph} .
- The classification can be reduced to the following question:

For
$$\nu \in \mathbb{R}^n$$
, when's the spherical Langlands quotient $J(\nu) \in \widehat{G}_{sph}$?

• \widehat{G}_{sph} is known by Barbasch-Ciubotaru, Vogan or atlas. For G = O(3,2) and $G_2(\mathbb{R})$, the $\nu \in \mathbb{R}^2$ such that $J(\nu) \in \widehat{G}_{sph}$ are:

Unitary dual of $G = G_2(\mathbb{R})$

Unitary Dual with Fine Lowest K-types

- We can generalize the classification of \widehat{G}_{sph} find all irreducible, unitary representations of G containing a fine K-type $\delta_{p,q}$ (p+q=n):
 - G = O(n, n): $\delta_{p,q} = \wedge^p \mathbb{C}^n \otimes \mathbb{C}$.
 - G = O(n, n+1): $\delta_{p,q} = \wedge^p \mathbb{C}^n \otimes \mathbb{C}$.
 - $G = Sp(2n, \mathbb{R})$: $\delta_{p,q} = \wedge^p \mathbb{C}^{2n}$.
- If p = 0, then $\delta_{0,n}$ is the trivial K-type and we are back to the spherical case in last slide.
- For $\nu_p \in \mathbb{R}^p$, $\nu_q \in \mathbb{R}^q$, one wants to know:

When is the Langlands quotient $J(\delta_{p,q}; \nu_p, \nu_q)$ unitary?

• Indeed, it's related to the *endoscopic subgroup* $G_1 \times G_2$ of G:

Theorem (Barbasch-Ciubotaru-Pantano)

$$\mathit{Let} \ (G_1, G_2) = \begin{cases} (O(p, p), O(q, q)) & \textit{if} \ G = O(n, n) \\ (O(p, p + 1), O(q, q + 1)) & \textit{if} \ G = O(n, n + 1) \\ (O(p, p), Sp(2q, \mathbb{R})) & \textit{if} \ G = Sp(2n, \mathbb{R}) \end{cases}$$

Then $J(\delta_{p,q}; \nu_p, \nu_q) \in \widehat{G}_{fine}$ is unitary $\Rightarrow J_{G_1}(\nu_p) \in \widehat{G}_{1sph}$ and $J_{G_2}(\nu_q) \in \widehat{G}_{2sph}$.

Main Theorem

Conjecture (Barbasch-Ciubotaru, Pantano-Paul-Salamanca)

Retain the above setting, then the unitary duals on both sides are equal:

$$J(\delta_{p,q};\nu_p,\nu_q)\in \widehat{G}_{\mathit{fine}} \text{ is unitary} \Leftrightarrow J_{G_1}(\nu_p)\in \widehat{G}_{2\mathit{sph}} \text{ and } J_{G_2}(\nu_q)\in \widehat{G}_{2\mathit{sph}}.$$

Theorem (Li-W.)

The above conjecture holds for G = O(n, n + 1).

Unitary dual of O(3,2) and O(2,1)

Unitary dual of $J(\delta_{2,1}; \nu_p, \nu_q)$ in O(4,3)

Thank you!