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1 State estimation
To see the standard scaling for the mutual information, we consider state estimation,

i.e., we focus on a d-parameter state family {ρθ}θ∈Θ on the Hilbert space HA, where

Θ is a subset of Rd. We consider a Bayesian prior µ on Θ. We denote the set of

density matrices on H by S(H). We denote the classical system Θ by B. We consider

n-copy state ρ⊗nθ . We have classical-quantum state

ρAB :=

∫
Θ

ρ⊗nθ ⊗ |θ⟩⟨θ|µ(dθ). (1.1)

We focus on the mutual information between A and B, which is given as

I(A;B) = S(ρA)−
∫
Θ

S(ρ⊗nθ )µ(dθ) =

∫
Θ

D(ρ⊗nθ ∥ρA)µ(dθ), (1.2)

where S(ρ) expresses the von Neumann entropy −Tr ρ log ρ of ρ, and D(ρ∥σ)
expresses the quantum relative entropy Tr ρ(log ρ− log σ).

When all densities are commutative, i.e., the model is classical, the references [31, 32]

showed that

I(A;B) =
d

2
log n+O(1). (1.3)
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When our model {ρθ}θ∈Θ is the full model on t-dimensional system and µ is invariant

for unitary action, the reference [33] showed that

I(A;B) =
t2 − 1

2
log n+O(1). (1.4)

Since the number of parameters of the full model is t2 − 1, (1.4) can be considered as

a generalization of (1.3). When a model satisfies a certain condition, using the result

by [36], we can show

I(A;B) =
d

2
log n+ o(log n). (1.5)

That is, the leading term is the number of parameters times 1
2 log n.
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We back to the spirit of population coding, and focus on the number N({ρ⊗nθ }θ∈Θ, ϵ)

of distinguishable states among {ρ⊗nθ }θ∈Θ with the average decoding error probability

ϵ > 0. As shown in [44, (4.32)], using Fano inequality, we can evaluate this number as

logN({ρ⊗nθ }θ∈Θ, ϵ) ≤
log 2 + I(A;B)

1− ϵ
. (1.6)

That is, the relations (1.3), (1.4), and (1.5) give upper bounds of this number.
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2 General problem formulation

2.1 General description

Let G be a compact group and µ be the Haar measure of G. We focus on a unitary

representation f of G over a finite-dimensional Hilbert space. For this aim, we choose

an input state. We assume that any entangled input state with any reference system

is available. To consider this problem, we denote the set of the labels of irreducible

representations of G by Ĝ. Let Uλ be the irreducible representation space identified by

λ ∈ Ĝ, and dλ be its dimension.

We also define the twirling operation for the group G as

TG(ρ) :=
∫
G

f(g′)ρf(g′)†µ(dg′). (2.1)

We denote the set of irreducible representations appearing in f by Ĝf . We decompose

the representation system HA as follows.

HA =
⊕
λ∈Ĝf

Uλ ⊗ Cnλ , (2.2)

where nλ expresses the multiplicity of the representation space Uλ.
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When a reference system Cl is available, we have

HAl := HA ⊗ Cl =
⊕
λ∈Ĝf

Uλ ⊗ Clnλ . (2.3)

However, when the input state is a pure state, the orbit is restricted to the following

space by choosing a suitable subspace Cmin(dλ,lnλ) of Clnλ . That is, our

representation space can be considered as follows.⊕
λ∈Ĝf

Uλ ⊗ Cmin(dλ,lnλ). (2.4)

When l ≥ dλ/nλ for any λ ∈ Ĝf , our representation is given as

HAR :=
⊕
λ∈Ĝf

Uλ ⊗ Cdλ . (2.5)

In the following, we consider the above case. We denote the projection to Uλ ⊗ Cdλ
by Pλ.
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2.2 Mutual information

We choose an input state ρ and a distribution P on the system B = G, where the

random choice of B is denoted by the random variable B. So, we have a

classical-quantum state
∑
g∈X P (g)f(g)ρf(g)

† ⊗ |g⟩⟨g|. We focus on the mutual

information I(Al;B) or (AR;B), which depends on ρ and P . When ρ is decomposed

as
∑
j qjρj , the mutual information is evaluated as

I(Al;B)[P, ρ] :=S
( ∑
g′∈X

P (g′)f(g′)ρf(g′)†
)
−

∑
g∈X

P (g)S
(
f(g)ρf(g)†

)
=

∑
g∈X

P (g)D
(
f(g)ρf(g)†

∥∥∥ ∑
g′∈X

P (g′)f(g′)ρf(g′)†
)

≤
∑
j

qj
∑
g∈X

P (g)D
(
f(g)ρjf(g)

†
∥∥∥ ∑
g′∈X

P (g′)f(g′)ρjf(g
′)†

)
. (2.6)

The final inequality follows from the joint convexity of relative entropy. Since any

mixed state can be written as a mixture of pure states, to maximize the mutual

information, we can restrict the input state as an input pure state

|ψ⟩ = ⊕λ∈Ĝf

√
pλ|ψλ⟩. In this case, since the von Neumann entropy of a pure state is

zero, the mutual information is given as the von Neumann entropy of the mixture of
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the final states.

I(Al;B)[P, |ψ⟩] = S
( ∑
g′∈X

P (g′)f(g′)|ψ⟩⟨ψ|f(g′)†
)
. (2.7)

We consider the following optimization problem.

I(G)Al := max
|ψ⟩

max
P

I(Al;B)[P, |ψ⟩]. (2.8)

As shown in [45], due to the convexity of von Neumann entropy the maximum is

attained by the Haar measure µ. Hence,

max
P

I(Al;B)[P, |ψ⟩] = I(Al;B)[µ, |ψ⟩] = S(TG(|ψ⟩⟨ψ|)), (2.9)

which implies

I(G)Al = max
|ψ⟩

S(TG(|ψ⟩⟨ψ|)). (2.10)

Here, we set |ϕλ⟩ to be a pure state Uλ ⊗ Cmin(dλ,lnλ) such that TrUλ
|ϕλ⟩⟨ϕλ| is the

completely mixed state on Cmin(dλ,lnλ). Such a state |ϕλ⟩ is called the maximally

entangled state on Uλ ⊗ Cmin(dλ,lnλ).
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When |ψ⟩ is the state |ϕ(p)⟩ :=
∑
λ∈Ĝf

√
pλ|ϕλ⟩, where p is a distribution on Ĝf , we

have

S(TG(|ϕ(p)⟩⟨ϕ(p)|)) = S
( ∑
λ∈Ĝf

pλ
Pλ

dλmin(nλ, dλ)

)
=S(p) +

∑
λ∈Ĝf

pλ log(dλmin(nλ, dλ)). (2.11)

Since the dimension of support of TG(|ψ⟩⟨ψ|) is upper bounded by∑
λ∈Ĝ dλmin(nλ, dλ), we have

I(X;Al)[µ, |ψ⟩] = S(TG(|ψ⟩⟨ψ|)) ≤ R(G)Al := log
( ∑
λ∈Ĝf

dλmin(lnλ, dλ)
)
. (2.12)

The equality holds when the input state is |ϕ(p)⟩ and pλ = dλ min(lnλ,dλ)∑
λ′∈Ĝf

dλ′ min(lnλ′ ,dλ′ )
.

Therefore, we have

I(G)Al = log
( ∑
λ∈Ĝf

dλmin(lnλ, dλ)
)
. (2.13)
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Overall, the optimal input state is

∑
λ∈Ĝf

√
dλmin(lnλ, dλ)∑

λ′∈Ĝf
dλ′ min(lnλ′ , dλ′)

|ϕλ⟩. (2.14)

In particular, when l satisfies the condition l ≥ dλ/nλ for any λ ∈ Ĝf ,

I(G)AR = I(G)Al = R(G)AR := log
( ∑
λ∈Ĝf

d2λ

)
. (2.15)
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2.3 Number of distinguishable elements

Next, we consider how many elements in G can be distinguished via the above

process. When the input state is ρ, we denote the number of distinguishable states

among {f(g)ρf(g)†}g∈G with the average decoding error ϵ > 0 by MAl(ρ, ϵ). That is,

MAl(ρ, ϵ) := max

{
M

∣∣∣∣ 1
M

∑M
j=1 Tr f(gj)ρf(gj)

†Πj
≥ 1− ϵ

}
, (2.16)

where the maximum in (2.16) is taken with respect to M, g1, . . . , gM ∈ G, {Πj}Mj=1.

We consider the following optimization problems.

Mϵ(G)Al := max
ρ

MAl(ρ, ϵ). (2.17)

We have

logM(|ψ⟩, ϵ) ≥ max
P

Sα

( ∑
g′∈X

P (g′)f(g′)|ψ⟩⟨ψ|f(g′)†
)
− 1

α− 1
(log 2− log ϵ),

(2.18)

logM(|ψ⟩, ϵ) ≤ max
P

Sβ

( ∑
g′∈X

P (g′)f(g′)|ψ⟩⟨ψ|f(g′)†
)
+

1

β − 1
log(1− ϵ) (2.19)

2 General problem formulation 10/30



for 0 < β < 1 and 1 < α ≤ 2. For its detailed derivation, see Appendix AppendixA.

The above maximum is attained when P is the Haar measure µ.

Since the dimension of support of TG(|ψ⟩⟨ψ|) is upper bounded by∑
λ∈Ĝ dλmin(nλ, dλ), we have

Sα(TG(|ψ⟩⟨ψ|)) ≤ R(G)Al. (2.20)

The equality holds when the input state is |ϕ⟩. Thus, choosing the best choice α = 2

and taking the limit β → +0, we have

R(G)Al − (log 2− log ϵ) ≤ logMϵ(G)Al ≤ R(G)Al − log(1− ϵ). (2.21)

In particular, we have

R(G)AR − (log 2− log ϵ) ≤ logMϵ(G)AR ≤ logR(G)AR − log(1− ϵ). (2.22)

Therefore, when 1 > ϵ > 0 is fixed, logR(G)AR is the dominant term.
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3 Multiple phase estimation

Here, we consider the multi-phase application model on the t-dimensional system HA

spanned by {|j⟩}t−1
j=0. This model is given as the application of the group

MPt−1 := {Uθ}θ∈[0,2π)t−1 , where the unitary Uθ is defined as

|0⟩⟨0|+
∑t−1
j=1 e

iθj |j⟩⟨j|. Now, we consider the n-parallel application of Uθ on

HAn := H⊗n
A . In this representation, all irreducible representations are characterized

by the combinatorics Cnt , which is defined as

Cnt :=
{
n⃗ := (n0, n1, . . . , nt−1) ∈ Nt

∣∣∣ t−1∑
j=0

nj = n
}
, (3.1)

where N is the set of non-negative integers. Since all irreducible representations are

one-dimensional, dn⃗ = 1 for n⃗ ∈ Cnt so that we do not need to attach any reference

system, i.e., R(G)A1 = R(G)AR. Since |Cnt | =
(
n+t−1
t−1

)
, we have

I(MPt−1)An =R(MPt−1)An = log

(
n+ t− 1

t− 1

)
= (t− 1) log n+ o(1) (3.2)

while the number of our parameters is t− 1. Compare with (1.5), (3.2) achieves the

twice of the state estimation case.
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When t = 2, the optimal input state is

n∑
j=0

1√
n+ 1

|
j︷ ︸︸ ︷

0 . . . 0

n−j︷ ︸︸ ︷
1 . . . 1⟩. (3.3)

The asymptotic estimation error with the above input state has been studied in [46,

Sections 3 and 4]. As explained in [19, Section 4], this method is essentially the same

as Kitaev’s method [48, 49], and has been implemented by [50].

Here, we compare the input state (3.3) with the case with the noon state [9, 8, 7].

The input noon state has only two irreducible representations; the subspace spanned

by |0⟩⊗n and |1⟩⊗n. The relations (2.9) and (2.11) imply

I(X;A1)[µ,
1√
2
(|0⟩⊗n + |1⟩⊗n)] = log 2. (3.4)

The input noon state has quite small global information, which certifies the

impossibility of global estimation by the input noon state.

When we focus on the error sin2
θguess−θtrue

2 , the input state (3.3) does not coincide

with the optimal input. Further, the input state (3.3) does not achieve Heisenberg

limit in this sense, but the input state (3.3) achieves the Heisenberg scaling in the

sense limiting distribution.
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4 n-tensor product representation of SU(t) on HA = Ct

Y nt : Set of Semistandard Young tableau.

Mλ = Cnλ : Multiplicity space of Irreducible Unitary Representation Uλ with

Multiplicity nλ.

Our representation space:

HAn =
⊕
λ∈Y n

t

Hλ ⊗Mλ. (4.1)

When λ = (λ1, . . . , λt) with λ1 ≤ . . . ≤ λt and
∑
j λj = n, dλ := dimHλ is given as

dλ =
∏

1≤j<k≤t

k − j + λk − λj
k − j

. (4.2)

It is upper bounded by (n+ 1)t(t−1)/2. When the reference system Cl is sufficiently

large in the sense of (2.5), the maximum mutual information is evaluated as

I(SU(t))AnR =R(SU(t))AnR =log
( ∑
λ′∈Y n

t

d2λ′

)
≤ log(n+ 1)(t+1)t+(t−1) = (t2 − 1) log(n+ 1). (4.3)
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Due to (2.14), the optimal input state is

∑
λ∈Y n

t

dλ

√√√√( ∑
λ′∈Y n

t

d2λ′

)−1

|ϕλ⟩, (4.4)

Here, |ϕλ⟩ is the maximally entangled state on Hλ ⊗Mλ.

When t is fixed and only n increases, we have

log
( ∑
λ′∈Y n

t

d2λ′

)
= (t2 − 1) log n+O(1), (4.5)

which is shown in Section 5. Since t2 − 1 is the number of parameters of SU(t). The

leading term in (4.5) is twice of the case of state estimation case given in (1.5).

Therefore, this behavior can be considered to achieve the Heisenberg scaling in the

sense of mutual information.
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At least, when t = 2, we can show the above relation as follows. Consider the case

with t = 2. When n = 2m, we have

∑
λ′∈Y n

d

d2λ′ =
m∑
k=0

(2k + 1)2 =
(m+ 1)(2m+ 1)(2m+ 3)

3
. (4.6)

When n = 2m− 1, we have

∑
λ′∈Y n

d

d2λ′ =
m∑
k=1

(2k)2 =
2m(m+ 1)(2m+ 1)

3
. (4.7)

Then, we have

log
( ∑
λ′∈Y n

d

d2λ′

)
= 3 log n− log 6 +O(

1

n
). (4.8)
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Here, we compare the above optimal case (4.3),(4.5) with the case of the input state

maximizing the trace of Fisher information matrix [11]. The maximally entangled

state |Φ⟩ on the symmetric subspace maximizes the trace of Fisher information matrix

[11]. In this case, since the dimension of the symmetric subspace is
(
n+t−1
t−1

)
, the

relations (2.9) and (2.11) imply

I(X;AR)[µ, |Φ⟩] = 2 log

(
n+ t− 1

t− 1

)
= 2(t− 1) log n+ o(1), (4.9)

which is much smaller than (4.3),(4.5).

Next, we focus on Mϵ(SU(t))AR. Due to (2.22), (4.3), and (4.5), logMϵ(SU(t))AR
behaves as

logMϵ(SU(t))AR = (t2 − 1) log n+O(1). (4.10)

Since SU(t) is parametrized by t2 − 1 parameters, B(R) scales as O(Rt
2−1). Since

Mϵ(SU(t))AR scales as O(nt
2−1), the upper bound of Rϵ scales as O(n−1).
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5 Proof of (4.5)

Since we have (4.3), it is sufficient to show

log
( ∑
λ′∈Y n

t

d2λ′

)
≥ (t2 − 1) log n+O(1). (5.1)

We choose a positive real number an such that n
ant

is an integer. We define the

subset Y nt (an) ⊂ Y nt as

Y nt (an) :=
{
λ
∣∣∣ n
ant

≤ λk+1 − λk for k = 1, . . . , t− 1
}
. (5.2)

For λ ∈ Y nt (an), we have

dλ =
∏

1≤j<k≤t

k − j + λk − λj
k − j

≥1

t

∏
1≤j<k≤t

λk − λj
t

≥
∏

1≤j<k≤t

n

ant2
=

( n

ant2
) (t−1)t

2 . (5.3)

Also, using mn := n− n
an

, we have

|Y nt (an)| =
(
mn + t− 1

t− 1

)
≥ mt−1

n

(t− 1)
. (5.4)
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Therefore, ∑
λ∈Y n

t

d2λ ≥
∑

λ∈Y n
t (an)

d2λ≥
∑

λ∈Y n
t (an)

( n

ant2
)(t−1)t

=|Y nt (an)|
( n

ant2
)(t−1)t ≥ mt−1

n

(t− 1)

( n

ant2
)(t−1)t

. (5.5)

When an choose as a value such that 2 ≤ an ≤ 3, we have

log
( mt−1

n

(t− 1)
(
n

ant2
)(t−1)t

)
= (t2 − 1) log n+O(1) (5.6)

because t− 1 + (t− 1)t = t2 − 1. Hence, we obtain (5.1).
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6 Conclusion
We have derived general formulas for the mutual information and the logarithm of the

number of distinguishable elements when a unitary group representation is given. We

have proposed the above quantities as a figure of merit to address the population

coding with group representation because these quantities reflect the global

information structure unlike Fisher information. Then, we have applied these general

formulas to the case with multi-phase estimation and multiple applications of SU(t).

As the results, we have revealed that the optimal strategy realized the twice value of

the standard case for these two quantities, which can be considered as Heisenberg

scaling. We have also shown that the optimal strategies for maximizing Fisher

information have much smaller values for these quantities. This fact shows the

advantage of our figure of merit over Fisher information.
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AppendixA Derivations of (2.18) and (2.19)

Since f(g′)|ψ⟩⟨ψ|f(g′)† is a pure state, the reference [47, (6)] shows the inequality

ϵ ≤2(M(|ψ⟩, ϵ)− 1)s Tr
( ∑
g′∈X

P (g′)f(g′)|ψ⟩⟨ψ|f(g′)†
)1+s

≤2M(|ψ⟩, ϵ)s Tr
( ∑
g′∈X

P (g′)f(g′)|ψ⟩⟨ψ|f(g′)†
)1+s

(AppendixA.1)

for 0 ≤ s ≤ 1 and any distribution P on G. Choosing α = 1 + s, we have

logM(|ψ⟩, ϵ) ≥Sα
( ∑
g′∈X

P (g′)f(g′)|ψ⟩⟨ψ|f(g′)†
)
− 1

α− 1
(log 2− log ϵ)

(AppendixA.2)

for 1 < α ≤ 2. Taking the maximum for P , we obtain (2.18).

Since f(g′)|ψ⟩⟨ψ|f(g′)† is a pure state, the reference [44, (4.67)] shows the inequality

log(1− ϵ)

≤max
P

log Tr
( ∑
g′∈X

P (g′)f(g′)|ψ⟩⟨ψ|f(g′)†
) 1

1−s

+
s

1− s
logM(|ψ⟩, ϵ)

(AppendixA.3)
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for s < 0. Choosing β = 1
1−s , we have (2.19).
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“Encoding classical information into quantum resources”. IEEE Transactions on

Information Theory 68, 4518–4530 (2022).

[46] Hiroshi Imai and Masahito Hayashi. “Fourier analytic approach to phase

estimation in quantum systems”. New Journal of Physics 11, 043034 (2009).

[47] M. V. Burnashev and A. S. Holevo. “On the reliability function for a quantum

communication channel”. Problems Inform. Transmission 34, 042312 (1998).

[48] A. Yu. Kitaev. “Quantum measurements and the abelian stabilizer

problem” (1995). arXiv:quant-ph/9511026.

[49] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. “Quantum algorithms

revisited”. Proc. R. Soc. Lond. A. 454, 339–354 (1998).

[50] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde.

“Entanglement-free heisenberg-limited phase estimation”. Nature 450,

393–396 (2007).

[51] Masahito Hayashi. “Fourier analytic approach to quantum estimation of group

action”. Communications in Mathematical Physics 347, 3–82 (2016).

References 29/30



[52] D. W. Berry, B. L. Higgins, S. D. Bartlett, M. W. Mitchell, G. J. Pryde, and

H. M. Wiseman. “How to perform the most accurate possible phase

measurements”. Phys. Rev. A 80, 052114 (2009).

[53] Masahito Hayashi. “Group representation for quantum theory”. Springer. (2017).

References 30/30


