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Background: Quantum Machine Learning

Goal:

Achieve advantages over classical ML by exploiting quantum
resources

Typical approaches:

VQE [Peruzzo+2014]: variational quantum circuits for optimization
QBM [Amin+2018]: quantum extension of Boltzmann machines

Our Perspective: Hybrid Approach
* Quantum model and classical training
* Parametrized quantum models are highly expressive,
describing complex quantum states
e Classical optimization updates parameters using
measurement outcomes
* Advantage: combine quantum expressivity with classical
efficiency
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Quantum model and classical training

Quantum model and classical training

=

1. Creating a quantum state py g based on the parameter 6 | (. sical

2. Measuring py ¢ in computational basis simulation

—

3. Calculating the cost function (ex. KL divergence) from the
measurement results Tr[py g Ay ]

4. Back to 1 until to minimize the cost function (ex. GD method)

Quantum System
Creating py g based on the parameter 6

Measurin the uantum state
Parameters gtheq Measurement

0 Tr(py oAy ]
Classical System
Calculating the cost function from Tr[py g Ay]
Optimizing to minimize the cost function
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Gradient descent method (GD)

e Conventional method to train parameterized models

Objective

Py : given data dist.
* To minimize KL divergence Py, - model dist.

DKL PV”PVO Z PV log Pv(V) - log PV,Q(V))

Parameter update rule ~
* To use gradient of KL divergence 7 ‘
0 < 6 — T - 89DKL \
Issues n: learning rate >

theta
¢ Weak convergence guarantees

e Sensitive to initialization & learning rate

* In the case of non-convex functions, convergence to the global
optimum is not guaranteed.

e Susceptible to vanishing gradients (Barren Plateau)
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Barren plateau

* The vanishing gradient phenomenon |
that occurs far from a local minima 2

aml

* The gradient variance decreases \
exponentially due to the following
factors:

theta

* Deep quantum circuits[McClean+2018] ‘

\ 4

e Multi-qubit[McClean+2018]
* Entanglement[Marrero+2021]

* Global measurement cost
functions[Wang+2021]

A stagnation
=)

71

ani

* Gradient methods that use gradients
for learning will be greatly affected

v

theta
Typical obstacle of non-convex optimization
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Our Proposal: The em Algorithm
GD method

9%9"‘77'5’9DKL

* Since gradients are used for non-convex functions, it is
susceptible to the vanishing gradient problem.

-

Quantum em algorithm (ours)

* We propose to use the em algorithm [Amari+1992] instead of the
GD method.

* |teratively performs e-step and m-step
* A mathematical generalization of EM algorithm [Dempster+1977]
* The gradient method is only used for m-step, that is convex

e Potential to avoid the Barren Plateau problem
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Boltzmann machine (BM) [Ackley+1985]

* Energy-based probabilistic generative model defined on an
undirected graph.
Components In quantum case, qubit
* Visible layer: V ={vy,...,uon} (v; =+1,i € [1,N])
* Hidden layer: H = {h1,...,ha}
* Parameters:
» Coupling strength between v; and h;: w;; € R
e Bias strength: b, ¢ R

Exponential family (RBM)

In this talk, we consider restricted BM
definition

[] Classical visible unit
O Classical hidden unit
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Restricted Boltzmann machine (RBM)

* Energy function of RBM (no connections between visible layers or
between hidden units.)

E(V,h) = — Z b?;’UZ' — Z bjhj — Z ’w?;jv?;hj

v, €V h;cH (i,j)EE
* Probability distribution
Pyag(v,h):=e BOM 7z 7= " EMP)

v.,h

Pyo(v):= > Pyge(v,h),

heH Exponential family (RBM)

[] Classical visible unit
O Classical hidden unit
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Restricted Quantum Boltzmann machine (RQBM)

* Hamiltonian

H == (biof +Tiof) = 005 + o) = Y wigoi

iEV jEH (i’j)EE
* Probability distribution

PV’Q(V) — TI’[AvPV,Q] Ay = ‘V> <V|

pvie:=e¢ )7, Z=Trle "] pvo=Trupvm.e

Exponential family (RQBM)

B Quantum visible unit
@ Quantum hidden unit
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Problem setting

Unsupervised learning in Boltzmann machine

Objective

Fitting model distribution Py, ¢ to data distribution Py, .

PV’Q = TI'[[)V’QAV] PV.o — TI'H)OVH,Q
pvig=e " /Z, Z=Trle™"]

Training:

Updating the parameter 6 to make the distribution of Py g and Py
closer

Evaluation

Using KL divergence between PV o and Py
DKL PV HPVQ Z PV log PV (V) — log PV’Q(V))
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EM (Expectation Maximization) algorithm
 directly intervenes in the structure of the hidden units and
explicitly optimizes them
Objective

e To minimize KL divergence:
Dxi(Pv X Pyy||Pva,g) = ZPV(V)DKL(PHH/ZV||PH|V=v,8) + DkL(Pv || Py,e)

Algorithm

e Alternates two steps:
e E-step: infer hidden variables
Pyue — Pryv(h) = Prv,e(h)
* M-step: maximize expected log-likelihood

0 = arggnax Ex~pyy_,log Pyue(v, H)|
Benefits

* Convex M-step
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EM (Expectation Maximization) algorithm
 directly intervenes in the structure of the hidden units and
explicitly optimizes them
Objective

* To minimize KL divergence:
Dxi(Pv X Pyy||Pva,g) = ZPV(V)DKL(PHH/ZV||PH|V=v,8) + DkL(Pv || Py,e)

Algorithm

* Alternates two steps: Application to QBM is not easy
e E-step: infer hidden variables

Pyue — Pryv(h) = Prv,e(h)
* M-step: maximize expected log-likelihood

0 = arggnax Ex~pyy_,log Pyue(v, H)|
Benefits

* Convex M-step
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em algorithm

* An information geometric reformulation of EM algorithm

Definition

* Exponential family & for a random variable X = {z} is a set of
probability distributions p(x; @) given by the exponential form:
p(X;0) —exp{zé’ ri(z) + k(x) — ¢(9)}=

1=1
where 9 = (¢,,...,6,) € R*is an n-dimensional vector parameter,

{ri(z)}?_1, k(z) are functions of x and ¥ is a normalization factor.

 Mixture family M is a set of is a set of distributions g(x) formed
by a probability mixture of m component distributions {g:(x)}%; :

— Z wz‘%’(m)

1=1
where, S w; =1, w; >0
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em algorithm

Objective

e To minimize KL divergence between an exponential family &
and a mixture family A

' Dy, (P
peiibes PrLPIQ)

Algorithm

M

e Alternating projections:

» e-step (e-projection): a projection of Qtto M
P; = argmin Dky,(P||Q:)
PeEM
* m-step (m-projection): a projection of P to E

(Qt+1 = argmin Dy (P |Q)

Benefits Qee

e Guarantees monotonic decrease of KL divergence.
Dx1.(Pi—1||Q¢) = Dxi(F||Q+) = Dk (Pr||@t+1)

e Convexity of m-step 14/27



Quantum em algorithm

* A guantum expansion of an em algorithm
Definition

» Exponential family € = {pg € S(H)}
k

po = exp(logp+ Y 6'X; — ¢(0))
i=1
where ) = (91, ey Qk) is parameters and ¢ is a normalization
factor.

* Mixture family M(a) = {p € S(H)|TrpX; = a;,i =1,...,k}
where H is Hilbert space and S(H ) is set of densities over H.
X1,...,Xg is linearly independent observables on H .

a = (ai,...,ar)is measurement results.
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Quantum em algorithm

Objective

* To minimize KL divergence between an exponential family &
and a mixture family A

in D
cnin_ kL (p||o)

Algorithm

e Alternating projections:
* e-step (e-projection): a projection of O ¢ to M

pt = argmin Dkr,(pl|o)
peEM

* m-step (m-projection): a projection of Ptio £

o¢r1 = argmin Dky,(p¢]|0)
oc&
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Semi-quantum Restricted Boltzmann machine (sgRBM) [Demidik+2025]

* Hamiltonian

H=-— Z(biaf —|—X) — Z(bjaj +T'jo5) — Z W;j0; 05

iEV jEH (i’j)EE
* Probability distribution

PVHG ‘= e_H/Z, 7 = Tr[e_H]
Pyo(v) =Tr[Avpve] Ay =|v) (V|
pv,e = 1rapvhe
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semi-quantum Boltzmann machine (sgRBM)

Advantage

* Analytical tractability:
* Allows closed-form output probabilities & gradients
 Efficient gradient estimation avoids costly QRBM training.

* Practical benefits:

* Mitigates barren plateaus (no entanglement across visible—
hidden cut).

 Demonstrated strong performance across multiple datasets.
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em algorithm for sqRBM

Definition

* Exponential family £ = {py 9|0 € Rw'}
* Mixture family M = {py | (V] pv |Vv) = Py (v),v € V}

(v|pvu |v)
=P = " Py ( =
PVH = Lv X pH|v = Z V |V> <V| ® PH|V=v PH|V V| pv |v)
Objective
* To minimize KL divergence:
min min  D(Py X pgv||pvEe)

Py XpH‘VGS pVH,QGM

e KL divergence
Dy, (Py % PH|V||PVH9 ZPV ) Dk ( PH|V v||PH|V =v 9) + DKL(PVHPV@)
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em algorithm for sqRBM

Algorithm 1 The em algorithm for sqRBM

Input Initial value of parameters 6(%)
Output Parameters 6

1: 9 = 9? D)

Py = argmin ) Py (V)DkiL(pav=v|lprv=ve®)
2: fort=20,1,... do .l pr|v g N . .
3. e-step: Since Dy, 2 0, the minimum is achieved when

w &

PH|v = PH|Vv,0()

4: m-step: convex optimization

ot — argmin Dxy, (Py X PH|v,0(t) lpvH,e) ‘

0
0 — 8(t+1) Using GD method
0« 0+ n(09Z + Tr(Py X pry.e )0 H)
5: End if convergence conditions are met

6: end for
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em algorithm for sqRBM

Mitigating the Barren Plateau Problem

 From the Model Aspect (sqRBM):

* The hybrid structure (Classical Visible + Quantum Hidden)
prevents entanglement between the visible and hidden
layers.

* This structurally avoids the exponential vanishing of
gradients, as the gradient calculations remain localized.

* From the Learning Method Aspect (em algorithm):
* The m-step is a convex optimization problem.

* This guarantees a well-defined optimization path, allowing
the model to escape flat landscapes and ensuring stable
learning.
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em algorithm vs GD (KL divergence)

The blue lines consistently achieve a lower final KLD than the red

lines for different numbers of hidden units.

(A) Bernoulli (PRX)
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em algorithm vs GD (KL divergence)

The blue lines consistently achieve a lower final KLD than the red
lines for different numbers of hidden units.

(B) Parity dataset
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em algorithm vs GD (KL divergence)

The standard GD method performed slightly better

(C) Cardinality dataset
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em algorithm vs GD (KL divergence)

The blue lines consistently achieve a lower final KLD than the red
lines for different numbers of hidden units.

(D) O(n?) dataset
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Conclusion

Contributions:
* Proposed em algorithm for QBMs.
* Analytical update rules in sqRBM.
* Demonstrated stable and effective learning.
* Potential to avoid barren plateau

* Experimental results:

e em>GDin 3/4 datasets
* GD better on Cardinality dataset

Limitations:
e Convergence speed.

e Future Work:

* Faster optimization (accelerated GD) to utilize convexity of m-step.
* Extension to fully quantum RBMs.
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