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Background: Quantum Machine Learning

Goal: 
Achieve advantages over classical ML by exploiting quantum 
resources
Typical approaches:
VQE [Peruzzo+2014]: variational quantum circuits for optimization
QBM [Amin+2018]: quantum extension of Boltzmann machines

Our Perspective: Hybrid Approach
• Quantum model and classical training

• Parametrized quantum models are highly expressive, 
describing complex quantum states

• Classical optimization updates parameters using 
measurement outcomes

• Advantage: combine quantum expressivity with classical 
efficiency
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Quantum model and classical training

1. Creating a quantum state 𝜌𝑉,𝜃  based on the parameter 𝜃

2. Measuring 𝜌𝑉,𝜃  in computational basis

3. Calculating the cost function (ex. KL divergence) from the 
measurement results Tr[𝜌𝑉,𝜃Λ𝑉]

4. Back to 1 until to minimize the cost function (ex. GD method)
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Quantum model and classical training

Quantum System
• Creating 𝜌𝑉,𝜃 based on the parameter 𝜃

• Measuring the quantum state

Classical System
• Calculating the cost function from Tr[𝜌𝑉,𝜃 Λ𝑉]

• Optimizing to minimize the cost function

Parameters
𝜃

Measurement
Tr[𝜌𝑉,𝜃Λ𝑉]

Classical 
simulation
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• Conventional method to train parameterized models

Objective

• To minimize KL divergence

Parameter update rule

• To use gradient of KL divergence

Issues

• Weak convergence guarantees
• Sensitive to initialization & learning rate

• In the case of non-convex functions, convergence to the global 
optimum is not guaranteed.

• Susceptible to vanishing gradients (Barren Plateau)
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Gradient descent method (GD)

theta

K
LD

𝑃𝑉: given data dist.
𝑃𝑉,𝜃 : model dist.

𝜂: learning rate
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• The vanishing gradient phenomenon 
that occurs far from a local minima

• The gradient variance decreases 
exponentially due to the following 
factors:
• Deep quantum circuits[McClean+2018]

• Multi-qubit[McClean+2018]

• Entanglement[Marrero+2021]

• Global measurement cost 
functions[Wang+2021]

• Gradient methods that use gradients 
for learning will be greatly affected
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Barren plateau

theta

K
LD

theta

K
LD

stagnation

Typical obstacle of non-convex optimization



Our Proposal: The em Algorithm

GD method

• Since gradients are used for non-convex functions, it is 
susceptible to the vanishing gradient problem.

Quantum em algorithm (ours)

• We propose to use the em algorithm [Amari+1992] instead of the 
GD method.

• Iteratively performs e-step and m-step

• A mathematical generalization of EM algorithm [Dempster+1977]

• The gradient method is only used for m-step, that is convex

• Potential to avoid the Barren Plateau problem

6/27
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Boltzmann machine (BM) [Ackley+1985]

• Energy-based probabilistic generative model defined on an 
undirected graph.

Components
• Visible layer: 
• Hidden layer: 
• Parameters:

• Coupling strength between 𝑣𝑖  and ℎ𝑗: 

• Bias strength: 

In this talk, we consider restricted BM
definition

𝑣1 𝑣2 𝑣𝑁

ℎ1 ℎ𝑀

In quantum case, qubit
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Restricted Boltzmann machine (RBM)

• Energy function of RBM (no connections between visible layers or 
between hidden units.)

• Probability distribution

𝑣1 𝑣2 𝑣𝑁

ℎ1 ℎ𝑀
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Restricted Quantum Boltzmann machine (RQBM)

• Hamiltonian

• Probability distribution
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Unsupervised learning in Boltzmann machine

Objective

Fitting model distribution 𝑃𝑉,𝜃  to data distribution 𝑃𝑉.

Training:

Updating the parameter 𝜃 to make the distribution of 𝑃𝑉,𝜃  and 𝑃𝑉  
closer

Evaluation

Using KL divergence between 𝑃𝑉,𝜃  and 𝑃𝑉

10

Problem setting
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• directly intervenes in the structure of the hidden units and 
explicitly optimizes them

Objective

• To minimize KL divergence:

Algorithm

• Alternates two steps:

• E-step: infer hidden variables

• M-step: maximize expected log-likelihood

Benefits

• Convex M-step
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EM (Expectation Maximization) algorithm
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EM (Expectation Maximization) algorithm

Application to QBM is not easy
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• An information geometric reformulation of EM algorithm

Definition

• Exponential family      for a random variable                 is a set of 
probability distributions               given by the exponential form:

   where                                  is an 𝑛-dimensional vector parameter,                                                                         

                                 are functions of 𝑥 and 𝜓 is a normalization factor.

• Mixture family        is a set of is a set of distributions 𝑞 𝑥  formed 
by a probability mixture of 𝑚 component distributions                   :

   where, 
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em algorithm
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Objective

• To minimize KL divergence between an exponential family     
and a mixture family 

Algorithm

• Alternating projections:

• e-step (e-projection): a projection of       to 

• m-step (m-projection): a projection of       to 
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em algorithm

Benefits

• Guarantees monotonic decrease of KL divergence.

• Convexity of m-step
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Quantum em algorithm

• A quantum expansion of an em algorithm

Definition

• Exponential family

where                                     is parameters and 𝜙 is a normalization 
factor.

• Mixture family

where       is Hilbert space and             is set of densities over      .   

                          is linearly independent observables on      .

                                   is measurement results.
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Objective

• To minimize KL divergence between an exponential family     
and a mixture family 

Algorithm

• Alternating projections:

• e-step (e-projection): a projection of        to 

• m-step (m-projection): a projection of       to 
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Quantum em algorithm
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Semi-quantum Restricted Boltzmann machine (sqRBM) [Demidik+2025]

• Hamiltonian

• Probability distribution
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semi-quantum Boltzmann machine (sqRBM)

Advantage

• Analytical tractability:

• Allows closed-form output probabilities & gradients

• Efficient gradient estimation avoids costly QRBM training.

• Practical benefits:

• Mitigates barren plateaus (no entanglement across visible–
hidden cut).

• Demonstrated strong performance across multiple datasets.
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Definition

• Exponential family 

• Mixture family 

Objective

• To minimize KL divergence:

• KL divergence

19

em algorithm for sqRBM
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em algorithm for sqRBM

convex optimization 

Since 𝐷KL ≥ 0, the minimum is achieved when

Using GD method
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Mitigating the Barren Plateau Problem

• From the Model Aspect (sqRBM):

• The hybrid structure (Classical Visible + Quantum Hidden) 
prevents entanglement between the visible and hidden 
layers.

• This structurally avoids the exponential vanishing of 
gradients, as the gradient calculations remain localized.

• From the Learning Method Aspect (em algorithm):

• The m-step is a convex optimization problem.

• This guarantees a well-defined optimization path, allowing 
the model to escape flat landscapes and ensuring stable 
learning.

21

em algorithm for sqRBM
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em algorithm vs GD (KL divergence)

(A) Bernoulli (PRX)

K
L
D

Epoch

N=7

The blue lines consistently achieve a lower final KLD than the red 
lines for different numbers of hidden units.
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em algorithm vs GD (KL divergence)

(B) Parity dataset

Epoch

N=7

K
L
D

The blue lines consistently achieve a lower final KLD than the red 
lines for different numbers of hidden units.
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em algorithm vs GD (KL divergence)

(C) Cardinality dataset

K
L
D

Epoch

N=7

The standard GD method performed slightly better
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em algorithm vs GD (KL divergence)

(D) 𝒪 𝑛2  dataset

Epoch

N=7

K
L
D

The blue lines consistently achieve a lower final KLD than the red 
lines for different numbers of hidden units.
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• Contributions:
• Proposed em algorithm for QBMs.

• Analytical update rules in sqRBM.

• Demonstrated stable and effective learning.

• Potential to avoid barren plateau

• Experimental results:
• em > GD in 3/4 datasets

• GD better on Cardinality dataset

• Limitations:
• Convergence speed.

• Future Work:
• Faster optimization (accelerated GD) to utilize convexity of m-step.

• Extension to fully quantum RBMs.

26

Conclusion
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