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Background

• Quantum measurement shows one of the main differences between classical and
quantum physics.

• General quantum measurement is always represented as Positive Operator-Valued
Measure (POVM) M = {Mx}x∈X , and in quantum information theory, the
measurement process can also be expressed by a quantum instrument.

• In the study of quantum measurement, one of the most important topics is the study
of uncertainty relations, which has been studied extensively these days.

• Start from a special kind of quantum instrument that we call ”State-Refocusing
Square Root Instrument” (SRSR-Instrument), we focus on its properties and its
possible applications on uncertainty relations.
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Positive Operator-Valued Measurement

Definition of Positive Operator-Valued Measurement (POVM) and the measuring output
possibility distribution are shown below:

Positive Operator-Valued Measurement (POVM)

A positive operator-valued measure (POVM) is a set of several positive operators
M = {Mx}X with x ∈ X the outcome set such that:

Mx ≥ 0, ∀x ∈ X (1)∑
x

Mx = 1. (2)

Let the quantum state be denoted by a density matrix ρ, the probability of obtaining the
outcome x follows the Born rule:

Pr(x) = Tr[Mxρ] (3)
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Quantum Instrument

When describing the whole quantum measurement process, it is convenient to introduce
the quantum instrument.

Quantum Instrument

Let Hin,Hout be finite-dimensional Hilbert spaces. A quantum instrument is a collection
{JM

x }X with each JM
x : B(Hin) → B(Hout) a completely positive trace non-increasing

(CPTNI) map and the sum of them is trace preserving (TP) corresponding to a given
POVM M = {Mx}X such that:

Tr[JM
x (ρ)] = Tr[Mxρ]. (4)

The above implies that JM(·) : ρ →
∑

x JM
x (ρ)⊗ |x⟩ ⟨x | , where {|x⟩} is an orthonormal

basis labelling the classical output of the instrument, is a CPTP map.
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Quantum Instrument

• Kraus Representation:
A linear completely positive and trace-preserving (CPTP) map

E : B(Hin) → B(Hout) admits a Kraus representation E(ρ) =
∑r

i=1 Ki ρK
†
i , where

Ki : Hin → Hout are so-called Kraus operator with the trace-preserving condition∑r
i=1 K

†
i Ki = 1in.

• Square Root Instrument:
A square-root instrument {JM

x }X , also known as the efficient instrument, is defined
as follows:

JM(·) : ρ →
∑
x

√
Mxρ

√
Mx ⊗ |x⟩ ⟨x | , (5)

where
√
Mx

†√
Mx = Mx . It is efficient because there is only one Kraus operator√

Mx for each outcome x . One can easily check that this instrument coincide with 4.
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State-Refocusing Square Root Instrument

Notice that in general, one can always do the post-processing with a unitary Ux for each
outcome x after the quantum instrument (or, one can think that it is the general
square-root instrument) such that:

IM(·) : ρ →
∑
x

Ux

√
Mxρ

√
MxU

†
x ⊗ |x⟩ ⟨x | . (6)

Consider the polar decomposition
√
ρ
√
Mx = Uρ

x

√√
Mx

√
ρ
√
ρ
√
Mx = Uρ

x

√√
Mxρ

√
Mx ,

one can see that:

√
ρMx

√
ρ =

√
ρ
√
Mx

√
Mx

√
ρ = Uρ

x

√
Mxρ

√
MxU

ρ
x
†. (7)

Therefore, by choosing the proper Uρ
x which is based on the state ρ and the measurement

Mx , we have state-refocusing square-root instrument:

State-Refocusing Square Root Instrument

IM
ρ (ρ) =

∑
x

Uρ
x

√
Mxρ

√
MxU

ρ
x
† ⊗ |x⟩ ⟨x | =

∑
x

√
ρMx

√
ρ⊗ |x⟩ ⟨x | . (8)
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Properties of SRSR-Instrument

• Petz transpose map: The well known Petz transpose map of a map E with the prior
state γ is:

R(ω) =
√
γE†(E(γ)−

1
2ωE(γ)−

1
2 )
√
γ. (9)

Now, for the SRSR-Instrument defined in 8, define the correspondent
quantum-classical (QC) channel M : ρ →

∑
x Tr[Mxρ] |x⟩ ⟨x |. One can easily see

M(·) = TrQ [IM
ρ (·)], where the subscript Q in TrQ refers to the “quantum part” of

the output state of IM
ρ . For each outcome x0 ∈ X , let E = M, ω = |x0⟩ ⟨x0| , and

set the prior state γ = ρ. We can get the output state of Petz transpose map RM
ρ is:

Petz transpose map and SRSR-Instrument (On the corresponding QC-Channel)

RM
ρ (|x0⟩ ⟨x0|) =

√
ρM†(M(ρ)−

1
2 |x0⟩ ⟨x0|M(ρ)−

1
2 )
√
ρ

=
√
ρM†(

|x0⟩ ⟨x0|
Tr[Mx0ρ]

)
√
ρ

=

√
ρMx0

√
ρ

Tr[Mx0ρ]
. (10)
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Properties of SRSR-Instrument

Petz transpose map and SRSR-Instrument (On the corresponding QC-Channel)

RM
ρ (|x0⟩ ⟨x0|) =

√
ρMx0

√
ρ

Tr[Mx0ρ]

To calculate the M† one can consider the Kraus operator of M is Ki ,x = |x⟩ ⟨i |
√
Mx .

• We found that the output of the Petz transpose map RM
ρ for one output information

(the classical outcome x0, e.g.) is the normalized state of the “quantum part” of the
output state of our SRSR-Instrument for that classical outcome.

• The question: What does the Petz transpose map mean?
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Quantum Bayes’ Rule and Retrodiction

Let Qfwd,Qrev be the bipartite states representing forward channel E and the reverse
channel R respectively:

Qfwd := E ⋆ ρ = (E ⊗ id)(|√ρ⟩⟩⟨⟨√ρ|)

= (1out ⊗
√

ρT)CE(1out ⊗
√
ρT) ∈ S(Hout ⊗Hin), (11)

Qrev := (R ⋆ τ)T = (id ⊗R)T(|τ⟩⟩⟨⟨τ |)
= (

√
τ ⊗ 1in)C

T
R(

√
τ ⊗ 1in) ∈ S(Hout ⊗Hin), (12)

where |ρ⟩⟩ :=
∑

ij ⟨i |
√
ρ |j⟩ |i⟩A1

|j⟩A2
is the canonical purification of ρ, and CE :=∑

i ,j E(|i⟩ ⟨j |)⊗ |i⟩ ⟨j | ∈ L+(Hout ⊗Hin),CR :=
∑

i ,j |i⟩ ⟨j | ⊗R(|i⟩ ⟨j |) ∈ L+(Hout ⊗Hin)
are the Choi operators of E and R.
With the preparation of the definition of the forward and reverse states, we can now
construct the quantum minimal change principle.
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Quantum Bayes’ Rule and Retrodiction

Classical Bayes’ rule can be derived from classical minimal change principle. Recently, the
quantum minimal change principle is defined by [1] and be used to derive the Quantum
Bayes’ rule.

Quantum Minimal Change Principle [1]

The quantum minimal change principle is an optimization problem such that

max
R

F (E ⋆ ρ, (R ⋆ τ)T)

subject to R is CPTP. (13)

Where the F (ρ, σ) := Tr[
√√

ρσ
√
ρ] = Tr[

√√
σρ

√
σ] is fidelity, which is used to measure

the state change.
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Quantum Bayes’ Rule and Retrodiction

Quantum Bayes’ Rule [1]

For a CPTP map E , suppose the reference prior is γ and the reference output is τ ,
assuming E ⋆ γ > 0 and τ > 0, the following CPTP map

R(ω) :=
√
γE†(DωD†)

√
γ (14)

D :=
√
τ(
√
τE(γ)

√
τ)−

1
2 (15)

is the unique solution of the program 13. Furthermore, if [τ, E(γ)] = 0, then the solution
coincide with the Petz transpose map 9.

• Notice that when the forward channel E is a POVM qc-channel, then the reference
output τ is the classical information that we got from the POVM, and [τ, E(γ)] = 0,
so for the quantum instrument, the quantum Bayes’ rule coincide with the Petz
transpose map. Recall 10, now we can say that it is exactly a state update rule based
on the classical information x ∈ X .

• As discussed before, SRSR-Instrument output the sub-normalized retrodictive update
states after the POVM for each classical outcome x .
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Quantum Bayes’ Rule and Retrodiction

Figure: Description of SRSR-Instrument
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Properties of SRSR-Instrument

• Sequential Measurement:
Base on SRSR-Instrument on the first measurement, one can consider the following
sequential measurement of two POVM M = {Mx}X and N = {Ny}Y :

IN ◦ IM
ρ (ρ) =

∑
x ,y

√
Ny

√
ρMx

√
ρ
√
Ny ⊗ |x⟩ ⟨x | ⊗ |y⟩ ⟨y | . (16)

An interesting observation is that, consider using SRSR-Instrument for the first
measurement, then joint probability does not change even swap the order of
measurement:

Pr(x , y) = Tr[IN
y ◦IM

x ,ρ(ρ)] = Tr[Ny
√
ρMx

√
ρ] = Tr[Mx

√
ρNy

√
ρ] = Tr[IM

x ◦IN
y ,ρ(ρ)].

(17)
The marginals also correct (One can check):∑

x

Tr[IN
y ◦ IM

x ,ρ(ρ)] =
∑
x

Tr[IM
x ◦ IN

y ,ρ(ρ)] = Tr[IN
y (ρ)], (18)∑

y

Tr[IN
y ◦ IM

x ,ρ(ρ)] =
∑
y

Tr[IM
x ◦ IN

y ,ρ(ρ)] = Tr[IM
x (ρ)]. (19)
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The Connection with the Uncertainty Relations

For the sequential measurement channel, the output state

σ = IN ◦ IM
ρ (ρ) =

∑
x ,y

√
Ny

√
ρMx

√
ρ
√
Ny ⊗ |x⟩ ⟨x | ⊗ |y⟩ ⟨y | , (20)

Notice that the joint probability
Pr(x , y) = Tr[Ny

√
ρMx

√
ρ] = Tr[

√
Ny

√
ρ
√
Mx

√
Mx

√
ρ
√
Ny ] = ||

√
Ny

√
ρ
√
Mx ||22, the

joint entropy of X and Y have the following inequality:

State-Dependent Entropic Uncertainty Relation 1

H(X )ρ + H(Y )ρ = H(X )σ + H(Y )σ

≥ H(XY )σ

= −
∑
x ,y

Tr[Ny
√
ρMx

√
ρ] log(Tr[Ny

√
ρMx

√
ρ])

≥ −max
x ,y

log ||
√
Ny

√
ρ
√
Mx ||22. (21)
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The Connection with the Uncertainty Relations

Compare to the famous Maassen and Uffink’s entropic uncertainty bound [2]

H(X ) + H(Y ) ≥ −max
x ,y

log ||
√
Mx

√
Ny ||2∞, (22)

our bound maybe useful for entropic uncertainty principle.
The sequential measurement channel 16 is CPTP, sub-unital. We can thus consider the
bound [3]

H(XY )σ − IGO(ρ; IN ◦ IM
ρ ) ≥ D(ρ||ρ̃), (23)

where
ρ̃ := ((IN ◦ IM

ρ )† ◦ (IN ◦ IM
ρ ))(ρ),

IGO(ρ; IN ◦ IM
ρ ) = H(ρ)−

∑
x ,y

Pr(x , y)H(IN
y ◦ IM

x ,ρ(ρ)).

Note that (IN ◦ IM
ρ )† is trace-non-increasing, so ρ̃ is subnormalized. Since

B ≤ B ′ ⇒ D(A||B) ≥ D(A||B ′), the use of ρ̃ actually makes the bound tighter.
Assume now the two POVMs are both rank-one POVM, in this case,
IGO(ρ; IN ◦ IM

ρ ) = H(ρ). We then have (see the next page):
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The Connection with the Uncertainty Relations

State-Dependent Entropic
Uncertainty Relation 2

H(X )ρ + H(Y )ρ = H(X )σ + H(Y )σ

≥ H(XY )σ

≥ D(ρ||ρ̃) + H(ρ). (24)

• We did some numerical tests, compare
our bounds with Maassen and Uffink’s
entropic uncertainty bound, and it
shows that both two bounds above
become tighter when the dimension is
larger than 3 and the number of the
elements of POVMs both larger than 3
(When d = 2, n = 2 it seems that our
bound and Berta’s bound are not
comparable).

Figure: Numerical Results on Relation 2
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Future Works

• The interpretation of “retrodictive uncertainty relations”
Based on Appleby’s idea [4], the “retrodictive error” is defined as the error between
the initial observable system and the output measurement pointer. However, from
the quantum Bayes’ rule, the information that has been retrodicted is the state itself.
Therefore, the retrodictive error becomes the guessing probability of the initial state.

• Interestingly, in the study of observational entropy, [5] shows that the observational
entropy can reveal some information of the “recoverability” of the original state.

• Working on analytical proof of a tight bound.
Unfortunately, the tightness of our bounds are still in numerical tests. Since the
SRSR-Instrument gives the minimum disturbance on the state, it is reasonable to
consider that our scenario will give a tight lower bound of “retrodictive entropic
uncertainty relation”.
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Thank You!
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