Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians

François Le Gall Nagoya University

Proceedings of the 2025 European Symposium on Algorithms (ESA 2025) arXiv:2410.21833

Shenzhen-Nagoya Workshop on Quantum Science 2025

Statement of our First Result

Consider a O(1)-local Hamiltonian H acting on n qubits

a Hermitian $2^n \times 2^n$ matrix H with nice "sparsity" properties (in particular, it can be described in poly(n) bits)

Let $\lambda_0(H)$ denote the smallest eigenvalue of H (the "ground energy")

First main result:

Estimating $\lambda_0(H)$ is a central problem in quantum complexity theory and computational chemistry

For any constant $\varepsilon > 0$, there exists a classical algorithm that computes with high probability an ε -relative approximation of $\lambda_0(H)$ in $2^{O(n)}$ time and poly(n) space.

Previously:

- the notation $O^*(\cdot)$ removes poly(n) factors \checkmark classical algorithm with $O^*(2^n)$ time but $O(2^n)$ space (Lanczos method)
- ✓ classical algorithm with poly(n) space but $2^{O(n \log n)}$ time (recursive Feynman method [Aaronson and Chen 2017])
 - we get for the first time simultaneously $2^{O(n)}$ time and poly(n) space
- ✓ quantum algorithm with $2^{O(n)}$ time and poly(n) space (phase estimation)
 - our algorithm matches the performance of the best quantum algorithm

		Type	Precision	Time	Space
	Our algorithm	classical	constant	$2^{O(n)}$	poly(n)
	Lanczos method	classical	1/poly(n)	$O^*(2^n)$	$O(2^{n})$
	Feynman method [Aaronson and Chen, 2017]	classical	1/poly(n)	$2^{O(n\log n)}$	poly(n)
	Phase estimation	quantum	1/poly(n)	$2^{O(n)}$	poly(n)

First main result:

For any constant $\varepsilon > 0$, there exists a classical algorithm that computes with high probability an ε -relative approximation of $\lambda_0(H)$ in $2^{O(n)}$ time and $\operatorname{poly}(n)$ time.

Previously:

- ✓ classical algorithm with $O^*(2^n)$ time but $O(2^n)$ space (Lanczos method)
- ✓ classical algorithm with poly(n) space but $2^{O(n \log n)}$ time (recursive Feynman method [Aaronson and Chen 2017])
 - we get for the first time simultaneously $2^{O(n)}$ time and poly(n) space
- ✓ quantum algorithm with $2^{O(n)}$ time and poly(n) space (phase estimation)
 - our algorithm matches the performance of the best quantum algorithm

Statement of our Second Result

Assume that we additionally know a vector (a "guiding state") that has some overlap χ with the eigenspace corresponding to $\lambda_0(H)$ Main setting when considering

Main setting when considering applications to computational chemistry

Second main result:

For any constant $\varepsilon > 0$, there exists a classical algorithm that computes with high probability an ε -relative approximation of $\lambda_0(H)$ in $\operatorname{poly}(\chi^{-1}, n)$ time and $\operatorname{poly}(n)$ space.

By taking $\chi = 2^{-n}$ (e.g., taking a random vector as guiding state), we get the first result

- Previously: \checkmark classical algorithm with $n^{O(\log(\chi^{-1}))}$ time and poly(n) space (dequantization of the Quantum Singular Value Transformation [Gharibian and LG 2022])
 - this improves the best classical algorithm
 - ✓ quantum algorithm with $poly(\chi^{-1}, n)$ time and poly(n) space (phase estimation)
 - our algorithm matches the performance of the best quantum algorithm

	Type	Precision	Time	Space
Our algorithm	classical	constant	$poly(\chi^{-1}, n)$	poly(n)
Gharibian-LG	classical	constant	$n^{O(\log(\chi^{-1}))}$	poly(n)
Phase estimation	quantum	1/poly(n)	$poly(\chi^{-1}, n)$	poly(n)

Second main result:

For any constant $\varepsilon > 0$, there exists a classical algorithm that computes with high probability an ε -relative approximation of $\lambda_0(H)$ in $\operatorname{poly}(\chi^{-1}, n)$ time and $\operatorname{poly}(n)$ space.

By taking $\chi = 2^{-n}$ (e.g., taking a random vector as guiding state), we get the first result.

Previously: \checkmark classical algorithm with $n^{O(\log(\chi^{-1}))}$ time and poly(n) space (dequantization of the Quantum Singular Value Transformation [Gharibian and LG 2022])

✓ quantum algorithm with $poly(\chi^{-1}, n)$ time and poly(n) space (phase estimation)

A Few Details about the Setting and Notations

✓ We write the O(1)-local Hamiltonian H as

$$H = \sum_{i=1}^{m} H_i$$

where m = poly(n) and each H_i is a $2^n \times 2^n$ matrix containing at most s = O(1) non-zero entries in each row and column

- ✓ We normalize the Hamiltonian so that $||H|| \le 1$ (all the eigenvalues are then in [-1,1])
- ✓ We discussing classical algorithms using the guiding state, we assume that we have
 "sample-and-query" access to it, as in all prior works on dequantization (e.g., [Tang 2019])
- ✓ Given a vector $u \in \mathbb{C}^{2^n}$, we write by u^{\dagger} his conjugate transpose Given two vectors $u, v \in \mathbb{C}^{2^n}$, the quantity $u^{\dagger}v$ corresponds to their inner product

```
Estimate \lambda_0(H)
```

Eigenvalue estimation via polynomial transformation

Compute $u^{\dagger}P(H)u$ for some vector u

Compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Compute
$$u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$$
 (for $r=0,\ldots,d$)

Compute one entry of
$$H_{x_1} \cdots H_{x_r} u$$
 (for $r = 0, ..., d$)

Estimate $\lambda_0(H)$

Eigenvalue estimation via polynomial transformation

Compute $u^{\dagger}P(H)u$ for some vector u

Trivial

Compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Sampling (our main technical contribution)

Compute $u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$ (for $r=0,\ldots,d$)

[Tang 2019]

Compute one entry of $H_{\chi_1} \cdots H_{\chi_r} u$ (for r = 0, ..., d)

Eigenvalues Estimation via Polynomial Transformation

(Standard technique in works on the Quantum Singular Transformation)

Consider the case of distinguishing if $\lambda_0 \le a$ or $\lambda_0 \ge b$ for $-1 \le a < b \le 1$ (b - a = $\Omega(1)$)

Consider the (unknown) spectral decomposition of *H*:

$$H \equiv \operatorname{diag}(\lambda_0, \lambda_1, ..., \lambda_{2^n-1})$$
 where $-1 \leq \lambda_0 \leq \lambda_1 \leq ... \leq \lambda_{2^n-1} \leq 1$ are the eigenvalues of H

The idea is to take a (low degree) polynomial $P \in \mathbb{R}[x]$ such that $P(x) \in [0,1]$ for all $x \in [-1,1]$ and

$$\begin{cases} P(x) \approx 1 \text{ if } x \in [-1,a] \\ P(x) \approx 0 \text{ if } x \in [b,1] \end{cases}$$

"approximation of the step function"

If
$$\lambda_0 \ge$$
 b, then $P(H) \equiv \text{diag}(P(\lambda_0), P(\lambda_1), ..., P(\lambda_{2^n-1})) \approx 0$

If $\lambda_0 \leq a$, then we have $P(\lambda_0) \approx 1$ and thus $P(H) \cong \text{diag}(1, P(\lambda_1), ..., P(\lambda_2 n_{-1}))$

Eigenvalues Estimation via Polynomial Transformation

More generally, for any vector $u \in \mathbb{C}^{2^n}$ we have

```
\begin{cases} u^{\dagger}P(H)u \approx 0 & \text{if } \lambda_0 \in [b,1] \\ u^{\dagger}P(H)u \geq \chi & \text{if } \lambda_0 \in [-1,a] & \text{where } \chi \text{ is the overlap between } u \text{ and the eigenspace} \end{cases}
```

corresponding to λ_0

Goal: compute $\underline{u^{\dagger}P(H)u}$ for some vector u

inner product of u and P(H)u

Write
$$P(x) = a_0 + a_1 x + \cdots + a_d x^d$$

Write
$$P(x) = a_0 + a_1 x + \cdots + a_d x^d$$
 Then $u^{\dagger} P(H) u = \sum_{r=0}^{\infty} a_r u^{\dagger} H^r u$

Goal: compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Which vector u? for our first result this will be a random vector If $\lambda_0 \ge b$, then $P(H) \equiv \operatorname{diag}(P(\lambda_0), P(\lambda_1), \dots, P(\lambda_{2^n-1})) \approx 0$ If $\lambda_0 \le a$, then we have $P(\lambda_0) \approx 1$ and thus $P(H) \cong \operatorname{diag}(1, P(\lambda_1), \dots, P(\lambda_{2^n-1}))$

Estimate $\lambda_0(H)$

Eigenvalue estimation via polynomial transformation

Compute $u^{\dagger}P(H)u$ for some vector u

Compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Compute
$$u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$$
 (for $r=0,\ldots,d$)

Compute one entry of
$$H_{\chi_1} \cdots H_{\chi_r} u$$
 (for $r = 0, ..., d$)

Computing $u^{\dagger}H^{r}u$ (the inner product of u and $H^{r}u$)

We have
$$u^{\dagger}H^{r}u=u^{\dagger}\left(\sum_{i=1}^{m}H_{i}\right)^{r}u$$

$$H = \sum_{i=1}^{m} H_i$$

Consider the probability distribution $q:\{1,...,m\}^r \rightarrow [0,1]$ defined as

$$q(x) = ||H_{x_1}|| \cdots ||H_{x_r}||$$
 for each $x = (x_1, ..., x_r) \in \{1, ..., m\}^r$

Consider the random variable
$$\frac{u^{\dagger}H_{x_1}\cdots H_{x_r}u}{q(x)}$$
 (here x is sampled from q)

Expectation:
$$\sum_{x} q(x) \frac{u^{\mathsf{T}} H_{x_1} \cdots H_{x_r} u}{q(x)} = \sum_{x} u^{\mathsf{T}} H_{x_1} \cdots H_{x_r} u = u^{\mathsf{T}} H^r u$$

Variance: small

Taking the mean of a small number of samples gives a good estimate

Goal: compute $u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$

Estimate $\lambda_0(H)$

Eigenvalue estimation via polynomial transformation

Compute $u^{\dagger}P(H)u$ for some vector u

Compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Sampling (our main technical contribution)

Compute $u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$ (for $r=0,\ldots,d$)

Compute one entry of $H_{\chi_1} \cdots H_{\chi_r} u$ (for r = 0, ..., d)

Computing $u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$

Theorem (Tang 2019): For any vectors $u, v \in \mathbb{R}^n$, a good estimate of $u^{\dagger}v$ can be efficiently computed given sample-and-query access to u and query-access to v

We do have sample-and-query access to u (by assumption)

Goal: implement query-access to $H_{\chi_1} \cdots H_{\chi_r} u$, i.e., given $i \in 1, ..., 2^n$, compute the *i*-th entry of $H_{\chi_1} \cdots H_{\chi_r} u$

This is iterated matrix multiplication

The key property we can use is that each matrix $H_{\chi_1}, \dots, H_{\chi_r}$ has at most s = O(1) nonzero entries in each row/column

A careful recursive implementation then leads to time complexity $O^*(s^r)$ and space complexity poly(n)

 $H: 2^n \times 2^n$ matrix s: sparsity of each H_i d: degree of P ε : precision

Estimate $\lambda_0(H)$

Eigenvalue estimation via polynomial transformation

Compute $u^{\dagger}P(H)u$ for some vector u

Compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Sampling (our main technical contribution)

Compute
$$u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$$
 (for $r=0,\ldots,d$)

Compute one entry of $H_{\chi_1} \cdots H_{\chi_r} u$ (for r = 0, ..., d)

Iterated matrix multiplication:
$$O^*(s^0 + s^1 + \dots + s^d)$$
 time and poly(n) space $f_{r=0}$

Total complexity: $O^*(s^d \cdot d)$ time and poly(n) space

 $H: 2^n \times 2^n$ matrix s: sparsity of each H_i d: degree of P

 ε : precision

```
Estimate \lambda_0(H)
```

 χ : overlap between the guiding state u and the eigenspace corresponding to λ_0

Eigenvalue estimation via polynomial transformation

Taking $d = O(\log(1/\chi)/\varepsilon)$ is enough

Compute $u^{\dagger}P(H)u$ for some vector the guiding state u

Compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Sampling (our main technical contribution)

Compute $u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$ (for $r=0,\ldots,d$)

Compute one entry of $H_{\chi_1} \cdots H_{\chi_r} u$ (for r = 0, ..., d)

Iterated matrix multiplication

Total complexity: $O^*(s^d \cdot d)$ time and poly(n) space

 $poly(\chi^{-1}, n)$ time when s and ε are constant

 $H: 2^n \times 2^n$ matrix s: sparsity of each H_i *d*: degree of P ε : precision

Estimate $\lambda_0(H)$

Eigenvalue estimation via polynomial transformation

 χ : overlap with eigenspace corresponding to λ_0

Taking $d = O(n/\varepsilon)$ is enough nough

Compute $u^{\dagger}P(H)u$ for some vector a random vector u

Trivial

 $\chi \gtrsim 2^{-n}$

Compute $u^{\dagger}H^{r}u$ for each $r \in \{0, ..., d\}$

Sampling (our main technical contribution)

Compute $u^{\dagger}H_{\chi_1}\cdots H_{\chi_r}u$ (for $r=0,\ldots,d$)

[Tang 2019]

Compute one entry of $H_{\chi_1} \cdots H_{\chi_r} u$ (for r = 0, ..., d)

Iterated matrix multiplication

Total complexity: $O^*(s^d \cdot d)$ time and poly(n) space

 $2^{O(n)}$ time when s and ε are constant

Conclusion

- ✓ We constructed classical algorithms approximating the ground-energy of a local Hamiltonian for two settings
 - without guiding state: exponential time but polynomial space complexity
 - with guiding state: time complexity depends on the overlap parameter χ
- ✓ In both settings, <u>for constant precision</u>, our algorithms improve previous classical algorithms and match the performance of quantum algorithms
- ✓ Our main insight is to use sampling, exploiting the fact that a local Hamiltonian is a sum of extremely sparse matrices

Main open question: Are our algorithms practical?

Can they be used in computational chemistry or computational physics when only a rough approximation is needed?