
Theoretical Foundations of Quantum

Advantage in Quantum Algorithms
Classical Algorithms for Constant

Approximation of the Ground State

Energy of Local Hamiltonians

François Le Gall
Nagoya University

Shenzhen-Nagoya Workshop on Quantum Science 2025

Proceedings of the 2025 European Symposium on Algorithms (ESA 2025)
arXiv:2410.21833

Statement of our First Result

First main result:

For any constant 𝜀 > 0, there exists a classical algorithm that computes with high

probability an 𝜀-relative approximation of 𝜆0(𝐻) in 2𝑂 𝑛 time and poly(𝑛) space.

Previously: ✓ classical algorithm with 𝑂∗ 2𝑛 time but 𝑂(2𝑛) space (Lanczos method)

✓ classical algorithm with poly(n) space but 2O(𝑛 log 𝑛) time

(recursive Feynman method [Aaronson and Chen 2017])

✓ quantum algorithm with 2𝑂 𝑛 time and poly(𝑛) space (phase estimation)

Let 𝜆0(𝐻) denote the smallest eigenvalue of 𝐻 (the “ground energy”)

we get for the first time simultaneously 2𝑂 𝑛 time and poly(𝑛) space

our algorithm matches the performance of the best quantum algorithm

Consider a 𝑂(1)-local Hamiltonian 𝐻 acting on 𝑛 qubits

a Hermitian 2𝑛 × 2𝑛 matrix 𝐻 with nice “sparsity” properties

(in particular, it can be described in poly(𝑛) bits)

the notation 𝑂∗ ⋅ removes poly(𝑛) factors

Estimating 𝜆0(𝐻) is a central problem in quantum

complexity theory and computational chemistry

First main result:

For any constant 𝜀 > 0, there exists a classical algorithm that computes with high

probability an 𝜀-relative approximation of 𝜆0(𝐻) in 2𝑂 𝑛 time and poly(𝑛) time.

Previously: ✓ classical algorithm with 𝑂∗ 2𝑛 time but 𝑂(2𝑛) space (Lanczos method)

✓ quantum algorithm with 2𝑂 𝑛 time and poly(𝑛) space (phase estimation)

Type Precision Time Space

Our algorithm classical constant 2𝑂 𝑛 poly(𝑛)

Lanczos method classical 1/poly(𝑛) 𝑂∗ 2𝑛 𝑂(2𝑛)

Feynman method
[Aaronson and Chen, 2017]

classical 1/poly(𝑛) 2O(𝑛 log 𝑛) poly(𝑛)

Phase estimation quantum 1/poly(𝑛) 2𝑂 𝑛 poly(𝑛)

✓ classical algorithm with poly(n) space but 2O(𝑛 log 𝑛) time

(recursive Feynman method [Aaronson and Chen 2017])

we get for the first time simultaneously 2𝑂 𝑛 time and poly(𝑛) space

our algorithm matches the performance of the best quantum algorithm

Statement of our Second Result

Assume that we additionally know a vector (a “guiding state”) that has some overlap 𝜒 with

the eigenspace corresponding to 𝜆0(𝐻)

Second main result:

For any constant 𝜀 > 0, there exists a classical algorithm that computes with high

probability an 𝜀-relative approximation of 𝜆0(𝐻) in poly(𝜒−1, 𝑛) time and poly(𝑛) space.

By taking 𝜒 = 2−𝑛 (e.g., taking a random vector as guiding state), we get the first result

Previously:

✓ quantum algorithm with poly(𝜒−1, 𝑛) time and poly(𝑛) space (phase estimation)

our algorithm matches the performance of the best quantum algorithm

✓ classical algorithm with 𝑛O(log 𝜒−1) time and poly(𝑛) space

(dequantization of the Quantum Singular Value Transformation [Gharibian and LG 2022])

this improves the best classical algorithm

Main setting when considering

applications to computational chemistry

Second main result:

For any constant 𝜀 > 0, there exists a classical algorithm that computes with high

probability an 𝜀-relative approximation of 𝜆0(𝐻) in poly(𝜒−1, 𝑛) time and poly(𝑛) space.

By taking 𝜒 = 2−𝑛 (e.g., taking a random vector as guiding state), we get the first result.

Previously:

Type Precision Time Space

Our algorithm classical constant poly(𝜒−1, 𝑛) poly(𝑛)

Gharibian-LG classical constant 𝑛O(log 𝜒−1) poly(𝑛)

Phase estimation quantum 1/poly(𝑛) poly(𝜒−1, 𝑛) poly(𝑛)

✓ quantum algorithm with poly(𝜒−1, 𝑛) time and poly(𝑛) space (phase estimation)

✓ classical algorithm with 𝑛O(log 𝜒−1) time and poly(𝑛) space

(dequantization of the Quantum Singular Value Transformation [Gharibian and LG 2022])

this improves the best classical algorithm

our algorithm matches the performance of the best quantum algorithm

A Few Details about the Setting and Notations

𝐻 =෍

𝑖=1

𝑚

𝐻𝑖

✓ We write the 𝑂(1)-local Hamiltonian 𝐻 as

where 𝑚 = poly(𝑛) and each 𝐻𝑖 is a 2𝑛 × 2𝑛 matrix containing at most 𝑠 = 𝑂(1) non-zero

entries in each row and column

✓ We normalize the Hamiltonian so that 𝐻 ≤ 1 (all the eigenvalues are then in [-1,1])

✓ We discussing classical algorithms using the guiding state, we assume that we have

“sample-and-query” access to it, as in all prior works on dequantization (e.g., [Tang 2019])

✓ Given a vector 𝑢 ∈ ℂ2
𝑛
, we write by 𝑢† his conjugate transpose

Given two vectors 𝑢, 𝑣 ∈ ℂ2
𝑛
, the quantity 𝑢†𝑣 corresponds to their inner product

Proof Overview

[Tang 2019]

Compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

Estimate 𝜆0(𝐻)

Eigenvalue estimation via polynomial transformation

Trivial

Compute 𝑢†𝑃 𝐻 𝑢 for some vector 𝑢

Compute one entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Sampling (our main technical contribution)

Iterated matrix multiplication

Proof Overview

[Tang 2019]

Compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

Compute 𝑢†𝑃 𝐻 𝑢 for some vector 𝑢

Estimate 𝜆0(𝐻)

Eigenvalue estimation via polynomial transformation

Trivial

Compute one entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Sampling (our main technical contribution)

Iterated matrix multiplication

Eigenvalues Estimation via Polynomial Transformation

Consider the (unknown) spectral decomposition of 𝐻 :

𝐻 ≡ diag(𝜆0, 𝜆1, … , 𝜆2𝑛−1) where −1 ≤ 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆2𝑛−1 ≤ 1 are the eigenvalues of 𝐻

The idea is to take a (low degree) polynomial 𝑃 ∈ ℝ[x]

such that 𝑃 𝑥 ∈ [0,1] for all 𝑥 ∈ [−1,1] and

ቊ
𝑃 𝑥 ≈ 1 if 𝑥 ∈ [−1,a]

𝑃 𝑥 ≈ 0 if 𝑥 ∈ [b,1]

If 𝜆0 ≥ b, then 𝑃 𝐻 ≡ diag(𝑃 𝜆0 , 𝑃(𝜆1), … , 𝑃(𝜆2𝑛−1)) ≈ 0

-1 1a b

1

𝑃 𝑥

𝜆0 𝜆1 ⋯

If 𝜆0 ≤ a, then we have 𝑃 𝜆0 ≈ 1 and thus 𝑃 𝐻 ≅ diag(1, 𝑃(𝜆1), … , 𝑃(𝜆2𝑛−1))

𝜆0

(Standard technique in works on the Quantum Singular Transformation)

Consider the case of distinguishing if 𝜆0 ≤ a or 𝜆0 ≥ b for −1 ≤ a < b ≤ 1 (b − a = Ω(1))

“approximation of

the step function”

Eigenvalues Estimation via Polynomial Transformation

Consider the (unknown) spectral decomposition of 𝐻 :

𝐻 = diag(𝜆0, 𝜆1, … , 𝜆2𝑛) where −1 ≤ 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆2𝑛 ≤ 1 are the eigenvalues of 𝐻

Goal: compute 𝑢†𝑃 𝐻 𝑢 for some vector 𝑢

Which vector 𝑢? ✓ for our first result this will be a random vector

✓ for our second result this will be the guiding state

inner product of 𝑢 and 𝑃 𝐻 𝑢

Write 𝑃(𝑥) = 𝑎0 + 𝑎1𝑥 +⋯𝑎𝑑 𝑥
𝑑

Goal: compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

More generally, for any vector 𝑢 ∈ ℂ2
𝑛

we have

൝
𝑢†𝑃 𝐻 𝑢 ≈ 0 if 𝜆0 ∈ [b, 1]

𝑢†𝑃 𝐻 𝑢 ≥ 𝜒 if 𝜆0 ∈ [−1, a]

𝑢†𝑃 𝐻 𝑢 = ෍

𝑟=0

𝑑

𝑎𝑟 𝑢
†𝐻𝑟𝑢Then

where 𝜒 is the overlap between 𝑢 and the eigenspace

corresponding to 𝜆0

If 𝜆0 ≥ b, then 𝑃 𝐻 ≡ diag(𝑃 𝜆0 , 𝑃(𝜆1), … , 𝑃(𝜆2𝑛−1)) ≈ 0

If 𝜆0 ≤ a, then we have 𝑃 𝜆0 ≈ 1 and thus 𝑃 𝐻 ≅ diag(1, 𝑃(𝜆1), … , 𝑃(𝜆2𝑛−1))

Proof Overview

[Tang 2019]

Compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

Compute 𝑢†𝑃 𝐻 𝑢 for some vector 𝑢

Estimate 𝜆0(𝐻)

Eigenvalue estimation via polynomial transformation

Trivial

Compute one entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Sampling (our main technical contribution)

Iterated matrix multiplication

Computing 𝑢†𝐻𝑟𝑢 (the inner product of 𝑢 and 𝐻𝑟𝑢)

We have 𝑢†𝐻𝑟𝑢 = 𝑢† ෍

𝑖=1

𝑚

𝐻𝑖

𝑟

𝑢 = ෍

𝑥1=1

𝑚

෍

𝑥2=1

𝑚

⋯ ෍

𝑥r=1

𝑚

𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢

Consider the probability distribution 𝑞: {1, … ,𝑚}𝑟→ [0,1] defined as

Consider the random variable
𝑢†𝐻𝑥1⋯𝐻𝑥𝑟𝑢

𝑞(𝑥)
(here 𝑥 is sampled from 𝑞)

small

σ𝑥 𝑞 𝑥
𝑢†𝐻𝑥1⋯𝐻𝑥𝑟𝑢

𝑞 𝑥
= σ𝑥 𝑢

†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 = 𝑢†𝐻𝑟𝑢

Taking the mean of a small number

of samples gives a good estimate
Goal: compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢

𝑞 𝑥 = 𝐻𝑥1 ⋯ 𝐻𝑥r for each 𝑥 = (𝑥1, . . . , 𝑥r) ∈ {1, … ,𝑚}𝑟

Expectation:

Variance:

𝐻 =෍

𝑖=1

𝑚

𝐻𝑖

Proof Overview

[Tang 2019]

Compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

Estimate 𝜆0(𝐻)

Eigenvalue estimation via polynomial transformation

Trivial

Compute 𝑢†𝑃 𝐻 𝑢 for some vector 𝑢

Compute one entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Sampling (our main technical contribution)

Iterated matrix multiplication

Computing 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢

For any vectors 𝑢, 𝑣 ∈ ℝ𝑛, a good estimate of 𝑢†𝑣 can be efficiently

computed given sample-and-query access to 𝑢 and query-access to 𝑣
Theorem (Tang 2019):

Goal: implement query-access to 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢, i.e.,

given 𝑖 ∈ 1, … , 2𝑛, compute the 𝑖-th entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢

This is iterated matrix multiplication

A careful recursive implementation then leads to time complexity 𝑂∗ 𝑠𝑟 and

space complexity poly(𝑛)

The key property we can use is that each matrix 𝐻𝑥1 , ⋯ , 𝐻𝑥𝑟 has at most 𝑠 = 𝑂(1) non-

zero entries in each row/column

We do have sample-and-query access to 𝑢 (by assumption)

Proof Overview

Compute one entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Total complexity: 𝑂∗ 𝑠𝑑 ⋅ 𝑑 time and poly(𝑛) space

Compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

[Tang 2019]

Compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

Compute 𝑢†𝑃 𝐻 𝑢 for some vector 𝑢

Estimate 𝜆0(𝐻)

Eigenvalue estimation via polynomial transformation

Trivial

Iterated matrix multiplication: 𝑂∗ 𝑠0 + 𝑠1 +⋯+ 𝑠𝑑 time and poly(𝑛) space

𝐻: 2𝑛× 2𝑛 matrix

s: sparsity of each 𝐻𝑖

𝑑: degree of 𝑃
𝜀 : precision

𝑟=0 𝑟=1 𝑟=d

Sampling (our main technical contribution)

Deriving the Second Result

[Tang 2019]

Compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

Compute 𝑢†𝑃 𝐻 𝑢 for some vector the guiding state 𝑢

Estimate 𝜆0(𝐻)

Eigenvalue estimation via polynomial transformation

Trivial

𝐻: 2𝑛× 2𝑛 matrix

s: sparsity of each 𝐻𝑖

𝑑: degree of 𝑃

Taking 𝑑 = 𝑂(log(1/𝜒)/𝜀)) is enough

𝜀 : precision

poly(𝜒−1, 𝑛) time when s and

𝜀 are constant

𝜒 : overlap between the guiding state u and the eigenspace corresponding to 𝜆0

Compute one entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Total complexity: 𝑂∗ 𝑠𝑑 ⋅ 𝑑 time and poly(𝑛) space

Iterated matrix multiplication

Sampling (our main technical contribution)

Deriving the First Result

[Tang 2019]

Compute 𝑢†𝐻𝑟𝑢 for each 𝑟 ∈ {0, … , 𝑑}

Compute 𝑢†𝑃 𝐻 𝑢 for some vector a random vector 𝑢

Estimate 𝜆0(𝐻)

Eigenvalue estimation via polynomial transformation

Trivial

𝐻: 2𝑛× 2𝑛 matrix

s: sparsity of each 𝐻𝑖

𝑑: degree of 𝑃
𝜀 : precision

Compute one entry of 𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Compute 𝑢†𝐻𝑥1 ⋯𝐻𝑥𝑟𝑢 (for 𝑟 = 0,… , 𝑑)

Total complexity: 𝑂∗ 𝑠𝑑 ⋅ 𝑑 time and poly(𝑛) space 2𝑂 𝑛 time when s and 𝜀 are constant

Taking 𝑑 = 𝑂(log(1/𝜒)/𝜀)) is enoughTaking 𝑑 = 𝑂(𝑛/𝜀) is enough

≳ 2−𝑛𝜒

Sampling (our main technical contribution)

Iterated matrix multiplication

𝜒 : overlap with eigenspace corresponding to 𝜆0

Conclusion

✓ We constructed classical algorithms approximating the ground-energy of a local

Hamiltonian for two settings

✓ Our main insight is to use sampling, exploiting the fact that a local Hamiltonian is a sum of

extremely sparse matrices

• without guiding state: exponential time but polynomial space complexity

• with guiding state: time complexity depends on the overlap parameter 𝜒

✓ In both settings, for constant precision, our algorithms improve previous classical

algorithms and match the performance of quantum algorithms

Main open question: Are our algorithms practical?

Can they be used in computational chemistry or computational

physics when only a rough approximation is needed?

	Slide 1: Theoretical Foundations of Quantum Advantage in Quantum Algorithms
	Slide 2: Statement of our First Result
	Slide 3
	Slide 4: Statement of our Second Result
	Slide 5
	Slide 6: A Few Details about the Setting and Notations　
	Slide 7: Proof Overview
	Slide 8: Proof Overview
	Slide 9: Eigenvalues Estimation via Polynomial Transformation
	Slide 10: Eigenvalues Estimation via Polynomial Transformation
	Slide 11: Proof Overview
	Slide 12: Computing u to the † , cap H to the r , u (the inner product of u and cap H to the r , u)
	Slide 13: Proof Overview
	Slide 14: Computing u to the † , cap H sub , x sub 1 , end subscript midline horizontal ellipsis cap H sub , x sub r , end subscript , u
	Slide 15: Proof Overview
	Slide 16: Deriving the Second Result
	Slide 17: Deriving the First Result
	Slide 18: Conclusion

