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Statement of our First Result

Consider a 0(1)-local Hamiltonian H acting on n qubits

\) a Hermitian 2" x 2™ matrix H with nice “sparsity” properties
(in particular, it can be described in poly(n) bits)

Let Ao(H) denote the smallest eigenvalue of H (the “ground energy”)

_ _ Estimating 1,(H) is a central problem in quantum
First main result: complexity theory and computational chemistry

For any constant ¢ > 0, there exists a classical algorithm that computes with high
probability an e-relative approximation of 1,(H) in 2°™ time and poly(n) space.

_ the notation 0*(-) removes poly(n) factors
Previously: v classical algorithm with 0*(2") time but 0(2") space (Lanczos method)

v’ classical algorithm with poly(n) space but 201087 time
(recursive Feynman method [Aaronson and Chen 2017])

» we get for the first time simultaneously 220 time and poly(n) space

v quantum algorithm with 2™ time and poly(n) space (phase estimation)
- our algorithm matches the performance of the best quantum algorithm



Type Precision Time

classical‘ constant ‘ 7o) poly(n)
Lanczos method classical ‘1/poly(n) ‘ 0*(2") 0(2M)

Our algorithm

Feynman method i O(nl
[Aa)ri)nsonand Chen, 2017] CIaSSICaI 1/p01Y(7’l) 2 (nlog ) pOlY(TL)

. . O(n)
First main result Phase estimation quantum | 1/poly(n)| 2 poly(n)

For any constant ¢ > 0, there exists a classical algorithm that computes with high
probability an e-relative approximation of 1,(H) in 2°™ time and poly(n) time.

Previously: v classical algorithm with 0*(2") time but 0(2") space (Lanczos method)
v’ classical algorithm with poly(n) space but 201087 time
(recursive Feynman method [Aaronson and Chen 2017])

» we get for the first time simultaneously 220 time and poly(n) space

v quantum algorithm with 2™ time and poly(n) space (phase estimation)
- our algorithm matches the performance of the best quantum algorithm



Statement of our Second Result

Assume that we additionally know a vector (a “guiding state”) that has some overlap y with

the eigenspace corresponding to 44(H) [ Main setting when considering ]

applications to computational chemistry

Second main result:

For any constant € > 0, there exists a classical algorithm that computes with high
probability an s-relative approximation of 1,(H) in poly(y 1, n) time and poly(n) space.

By taking y = 27" (e.g., taking a random vector as guiding state), we get the first result

Previously: v classical algorithm with n°1°8(x™")) time and poly(n) space
(dequantization of the Quantum Singular Value Transformation [Gharibian and LG 2022])

# this improves the best classical algorithm

v quantum algorithm with poly(y 1, n) time and poly(n) space (phase estimation)

# our algorithm matches the performance of the best quantum algorithm



Type Precision Time
Our algorithm classical‘ constant ‘poly()(_l,n) poly(n)
Gharibian-LG classical| constant | n00og(x™)  poly(n)
Phase estimation quantum|1/poly(n)| poly(¥~1,n) poly(n)

Second main result:

For any constant € > 0, there exists a classical algorithm that computes with high
probability an s-relative approximation of 1,(H) in poly(y 1, n) time and poly(n) space.

By taking y = 27" (e.g., taking a random vector as guiding state), we get the first result.

Previously: v classical algorithm with n°1°8(x™")) time and poly(n) space
(dequantization of the Quantum Singular Value Transformation [Gharibian and LG 2022])

# this improves the best classical algorithm

v quantum algorithm with poly(y 1, n) time and poly(n) space (phase estimation)

# our algorithm matches the performance of the best quantum algorithm



A Few Details about the Setting and Notations

v" We write the 0(1)-local Hamiltonian H as
m
H = z H;
i=1

where m = poly(n) and each H; is a 2" X 2™ matrix containing at most s = 0(1) non-zero
entries in each row and column

v" We normalize the Hamiltonian so that ||H|| < 1 (all the eigenvalues are then in [-1,1])

v" We discussing classical algorithms using the guiding state, we assume that we have
“sample-and-query” access to it, as in all prior works on dequantization (e.g., [Tang 2019])

v’ Given a vector u € C2", we write by u' his conjugate transpose

Given two vectors u, v € €2, the quantity uTv corresponds to their inner product



Proof Overview

Estimate A,(H)

ﬂ Eigenvalue estimation via polynomial transformation

Compute uTP(H)u for some vector u

ﬂ Trivial

Compute uTH"u for each r € {0, ..., d}

ﬂ Sampling (our main technical contribution)
Compute u'H, - H, u (forr =0,...,d)

ﬂ [Tang 2019]
Compute one entry of H, ---H, u (forr =0,...,d)

lterated matrix multiplication
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Eigenvalues Estimation via Polynomial Transformation

(Standard technique in works on the Quantum Singular Transformation)

Consider the case of distinguishingif A\p <aord; =bfor-1<a<b<1 (b—a=Q())
Consider the (unknown) spectral decomposition of H :

H = diag(Ay, A4, ..., Aon_1) Where -1 < 15 <A £ < An_y < 1arethe eigenvalues of H

A

1 -
The idea is to take a (low degree) polynomial P € R[X]

such that P(x) € [0,1] for all x € [-1,1] and

P(x)
[ P(x) =~ 1ifx € [—1,a] ) . .
1 P(x) ~ 0if x € [b,1] approxmatlo_n of \M
the step function M ol 1 1
| |
Ao Ao Aq

If A, = b, then P(H) = diag(P(A,), P(14), ..., P(A,n_1)) = 0
If A, < a, then we have P(1,) = 1 and thus P(H) = diag(1, P(4,),...,P(A,n_1))



Eigenvalues Estimation via Polynomial Transformation

-~

More generally, for any vector u € C2" we have

u"P(H)u =~ 0 ifA, € [b, 1]
uTP(H)u = y if 1, € [-1,a] where y is the overlap between u and the eigenspace
\_ corresponding to A, )

N

Goal: compute u*P(H\\)u for some vector u
- inner product of u and P(H)u
d

Write P(x) = ay + a;x + - ag x@ Then u™P(H)u = z a- uTHu

~ =0

Goal: compute uTH"u for each r € {0, ..., d}

Whgclg ve Ctg % dis %;}j?/{ S)lg(ﬂr)st reﬁkj/{t thIE)V\ﬂ||Obe a random vector
If 2o < a, then we have P(AO{O,I 4h CO”Q(E?)SE dJ{Qé N }J{f? th%? Zlﬂ_ln)g state



Proof Overview

Estimate A,(H)

ﬂ Eigenvalue estimation via polynomial transformation

Compute uTP(H)u for some vector u
|| Trivia

Compute uTH"u for each r € {0, ..., d}

Sampling (our main technical contribution)
Compute u'H, - H, u (forr =0,...,d)

ﬂ [Tang 2019]
Compute one entry of H, ---H, u (forr =0,...,d)

lterated matrix multiplication



Computing u™H"u (the inner product of u and H"u)

m r m
We have utH"u =uT (2 Hi) u H = zHi
i=1 '

Consider the probability distribution g: {1, ..., m}"— [0,1] defined as

q(x) = HHx1H HerH foreach x = (xq,...,x) € {1, ..., m}"

utH, -Hy u

q(x)

Consider the random variable (here x is sampled from q)

utHy - Hy u

q(x)

Expectation: Y., q(x) = s u“LHx1 o Hy U = utH"u

Variance: small

~\

rTaking the mean of a small number Goal: compute uTHx
1

_of samples gives a good estimate

J




Proof Overview

Estimate A,(H)

ﬂ Eigenvalue estimation via polynomial transformation

Compute uTP(H)u for some vector u

ﬂ Trivial

Compute uTH"u for each r € {0, ..., d}

ﬂ Sampling (our main technical contribution)

[Tang 2019]

Compute one entry of H, ---H, u (forr =0,...,d)

lterated matrix multiplication



Computing uH,, -+ Hy u

Theorem (Tang 2019):| For any vectors u, v € R", a good estimate of uTv can be efficiently
computed given sample-and-query access to u and query-access to v

We do have sample-and-query access to u (by assumption)

Goal: implement query-access to H, ---H, u, i.e.,
giveni € 1,..., 2", compute the i-th entry of H,, ---H, u

This is iterated matrix multiplication

The key property we can use is that each matrix H, ,---, H, has at most s = 0(1) non-
zero entries in each row/column

A careful recursive implementation then leads to time complexity 0*(s™) and
space complexity poly(n)



H: 2"x 2™ matrix d: degree of P

Proof Overview s: sparsity of each H, £ precision

Estimate A,(H)

ﬂ Eigenvalue estimation via polynomial transformation

Compute utP(H)u for some vector u

ﬂ Trivial

Compute uTH"u for each r € {0, ..., d}

ﬂ Sampling (our main technical contribution)

Compute u'H, - H, u (forr =0,...,d)

ﬂ [Tang 2019]
Compute one entry of H, ---H, u (forr =0,...,d)

Iterated matrix multiplication: 0*(?0 + }91 + -+ fd) time and poly(n) space

r=0 r=1 r=d

Total complexity: 0*(s¢ - d) time and poly(n) space



H: 2"x 2™ matrix d: degree of P

DeriVing the SeCOnd ReSUIt s: sparsity of each H; g . precision

x . overlap between the guiding state u and the eigenspace corresponding to A,

Estimate 1,(H)
ﬂ Eigenvalue estimation via polynomial transformation [Taking d = 0(log(1/x)/¢)) is enough ]

Compute uP(H)u for seme-vector the guiding state u

ﬂ Trivial

Compute u"H"u for each r € {0, ..., d}

ﬂ Sampling (our main technical contribution)

Compute u'H, - H, u (forr =0,...,d)

ﬂ [Tang 2019]
Compute one entry of H, ---H, u (forr =0, ...,d)

lterated matrix multiplication

" poly(y~1,n) time when s and |
€ are constant J

Total complexity: 0*(s¢ - d) time and poly(n) space




H: 2"x 2™ matrix d: degree of P

DeriVing the FirSt ReSUIt s: sparsity of each H; g . precision

x . overlap with eigenspace corresponding to A,

Estimate 1,(H)
ﬂ Eigenvalue estimation via polynomial transformation [Taking d = 0(n/e) Is enough ]nough ]

Compute utP(H)u for seme-veetor a random vector u

ﬂ Trivial Y > on
Compute u"H"u for each r € {0, ..., d}

ﬂ Sampling (our main technical contribution)

Compute u'H, - H, u (forr =0,...,d)

ﬂ [Tang 2019]
Compute one entry of H, ---H, u (forr =0, ...,d)

lterated matrix multiplication

Total complexity: 0*(s® - d) time and poly(n) space [20(") time when s and ¢ are constant ]




Conclusion

v" We constructed classical algorithms approximating the ground-energy of a local
Hamiltonian for two settings

o wit

o wit

v |In both

nout guiding state: exponential time but polynomial space complexity

n guiding state: time complexity depends on the overlap parameter y

settings, for constant precision, our algorithms improve previous classical

algorithms and match the performance of quantum algorithms

v Our main insight is to use sampling, exploiting the fact that a local Hamiltonian is a sum of
extremely sparse matrices

Main open question: Are our algorithms practical?

Can they be used in computational chemistry or computational
physics when only a rough approximation is needed?
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