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Quantum Neural Networks
Classical NNs
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Dynamical Lie algebra

[1] Allcock, Jonathan, et al. "On the dynamical Lie algebras of quantum approximate optimization algorithms." arXiv preprint arXiv:2407.12587 (2024).

• For QNN expressed as 𝑈 𝜽 = ∏ ∏ 𝑒௜ఏ೗,ೖு೗௄
௞ୀଵ

௅
௟ୀଵ , the DLA of the circuit is defined as [1],

𝔤 = spanℝ 𝑖𝐻ଵ, 𝑖𝐻ଶ, ⋯ , 𝑖𝐻௅ ௅௜௘ = spanℝ 𝑖𝒢 ௅௜௘

• In the finite case, 𝔤 = 𝔠 ⊕ 𝔤ଵ ⊕ 𝔤ଶ ⊕ ⋯ ⊕ 𝔤ெ where each 𝔤௝ is simple and 𝔠 is the center of 𝔤.

[2] Fontana, Enrico, et al. "The Adjoint Is All You Need: Characterizing Barren Plateaus in Quantum Ans¥" atze." Nature Communication (2023).

• If the circuit is deep enough to form a unitary 2-design on 
𝑒𝔤 ⊂ 𝒰 𝑑 (compact Lie group) [2]

𝔼𝜽 𝜕௟,௞ℒ 𝜌, 𝑂 = 0 Var𝜽 𝜕௟,௞ℒ 𝜌, 𝑂 ∈ 𝒪 ෍
1

𝑑𝔤ೕ
ଶ

௝

• ℒ 𝜌, 𝑂 = Tr 𝑈 𝜽 𝜌𝑈ற 𝜽 O ; 𝐻𝔤 is the projection of 𝐻 onto 𝔤.

The Lie algebraic theory of QNNs
unifies the study of the trainability of
QNNs up to a uniform initialization,
i.e., Barren Plateaus (BP).

BP



Examples of DLA

𝔤 = 𝔰𝔲 2 ⊕௡

𝒢 = 𝑍௝, 𝑌௝ ௝ୀଵ

௡

Simple local PQC Matchgate circuit

𝔤 = 𝔰𝔬 2𝑛

𝒢 = 𝑍௝ ௝ୀଵ

௡
∪ 𝑋௝𝑋௝ାଵ ௝ୀଵ

௡ିଵ

Universal circuit

𝔤 = 𝔰𝔲 2௡

𝒢 = 𝑍௝, 𝑌௝ ௝ୀଵ

௡
∪ 𝑋௝𝑋௝ାଵ ௝ୀଵ

௡ିଵ

High dimension of 𝔤௝ ⇒ High possibility to have BP! 
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Circuit framework of QRENN

Circuit Model of QRENN
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⋯ ⋯

𝑀௬೜Fixed 
initial 
state

Classical post-processing

• Assuming 𝑊 𝜽 approximate 𝑆𝑈 2௠ ; Hamiltonian 𝐻௧ 𝒙 , 𝐻ఛ 𝒙 = 0, for any 𝑡 ≠ 𝜏

• The DLA of QRENN can be decomposed into 

𝔤୕ୖ୉୒୒ ≃ 𝔠 ⊕ 𝔰𝔲 2௠ ⊕ ௥,

where 𝔠 ≔ spanℝ 𝑖𝐼௠ ⊗ 𝐻௧ 𝒙 ∶ 𝑡 ∈ 𝑇

• 𝑟 is the number of distinct joint eigenspaces from 𝐻௧(𝒙) ௧

𝑒௜𝝋భுభ 𝒙 𝑒௜𝝋೟ு೟(𝒙)

The intersections of the eigenspaces 
of 𝐻௧ and 𝐻ఛ can be decomposed into 
direct sum



Quantum supervised learning

• Information about a quantum system is stored in its Hamiltonian

• Given a batch training set 𝒯 = 𝑦௤, 𝑋௤ ௤
. Originally use MSE loss:

MSE =
1

𝑄
෍ 𝑦௤  − Tr 𝑈 𝑋௤; 𝜽, 𝝋 𝜌଴𝑈 𝑋௤; 𝜽, 𝝋

ற
𝑂

ଶ
ொ

௤ୀଵ

• Hard to analyse gradient, through experimental no BP.

• Inspired from hypothesis testing, design 𝑀ଵ, 𝑀ଶ, ⋯ 𝑀௞ forming POVM. We 
define 

ℒ 𝜽, 𝝋 = 1 −
1

𝑄
෍ Tr 𝑈 𝑋௤; 𝜽, 𝝋 𝜌଴𝑈 𝑋௤; 𝜽, 𝝋

ற
𝑀௬೜

ொ

௤ୀଵ



Main theorem on trainability

• For sufficiently deep QRENN (scales 𝑂 𝑝𝑜𝑙𝑦 𝑛 )[3], the circuit achieve 2-design of the compact 
Lie group and, hence, 𝔼𝜽,𝝋 𝜕௧,ఓℒ = 0 [2].

[2] Fontana, Enrico, et al. "The Adjoint Is All You Need: Characterizing Barren Plateaus in Quantum Ans¥" atze." Nature Communication (2023).
[3] Ragone, Michael, et al. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits." Nature Communications (2024)

𝔼𝜽,𝝋 𝜕௧,ఓℒ

• For 𝑚 ∈ 𝑂 log 𝑛 , If 𝜌௡ has sufficiently large ‘overlap’, i.e., Ω ଵ

௣௢௟௬ ௡
with the joint eigenspace of 

𝐻௧ ௧, where 𝐻௧ = 𝐻௧ 𝒙 , then,

Var𝜽,𝝋 𝜕௧,ఓℒ ≥ Ω
1

𝑝𝑜𝑙𝑦 𝑛

Theorem

0௠ 0௠  
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⋯ ⋯

𝑀
1௠ 1௠



Sketch of proof

0௠ 0௠  

𝜌௡

𝑊 𝜽ଵ 𝑊 𝜽ଶ

𝑚

𝑛
𝑒௜𝝋భ௑೜

𝑊 𝜽௧ାଵ

𝑒௜𝝋೟௑೜

⋯ ⋯

𝑀௬೜

1௠ 1௠

 Taking the derivative to the loss function:

 Averaging over the group

 Use the property of split Casimir operator:



Numerical results on trainability

• Gradient sampling experiments, 500 random initial parameters (𝜽, 𝝋) of the model, 𝜌௡ being fixed.

• We have tested three datasets namely Diagonal, Involutory and Pauli sets. For each dataset, 50 Hamiltonians with 
feature is generated and mixed with another 50 random Hermitian matrices (from Haar unitary).

(a) (b)
Random diagonal dataset 

𝑿𝟏𝑿𝟒
𝑿𝟑…𝑿𝒌 𝑿𝟐

𝒯
0௠ 0௠  

𝜌௡

𝑊 𝜽௧

𝑚

𝑛
𝑒௜𝝋೟𝑿𝒒 

× 𝑇

𝑀௬೜

𝐞𝐦𝐛𝐞𝐝



Supervised learning on quantum data

• Information about a quantum system is stored in its Hamiltonian

• Given a batch training set 𝒯 = 𝑦௤, 𝐻௤ ௤
. Inspired from hypothesis testing, design 𝑀ଵ, 𝑀ଶ, ⋯ 𝑀௞

forming POVMs. We define 

ℒ 𝜽, 𝝋 = 1 −
1

𝑄
෍ Tr 𝑈 𝐻௤; 𝜽, 𝝋 𝜌଴𝑈 𝐻௤; 𝜽, 𝝋

ற
𝑀௬೜

ொ

௤ୀଵ

Given a cluster-Ising model with periodic boundary conditions

𝐻 𝜆 = − ∑ 𝑋௝ିଵ𝑍௝𝑋௝ାଵ
ே
௝ୀଵ + 𝜆 ∑ 𝑌௝𝑌௝ାଵ

ே
௝ୀଵ .

where X, Y and Z are Pauli matrices. SPT phase in the Hamiltonian model [4]:

[4] Li, Weikang, Zhi-de Lu, and Dong-Ling Deng. "Quantum neural network classifiers: A tutorial." SciPost Physics Lecture Notes (2022): 061.

Problem

• An antiferromagnetic phase : λ > 1. • A cluster : λ < 1 

Can we detect different symmetry-
protected topological (SPT) phase of 
physical models via QRENN?



SPT phase detection
• QRENN model in learning SPT phase

Case 1: slots = 10, 𝑚 = 1 and 𝑛 = 8, initial state 0 ⊗ + ⊗଼. Outcome: Training 40 data uniformly generated 
by sampling 𝜆 ∈ 0,2 . Achieve 92.32% accuracy on 560 testing data.

Train: Prediction:

Case 2: slots = 10, 𝑚 = 1 and 𝑛 = 8, initial state 0 ⊗ + ⊗଼. Outcome: Train with different data sizes. Find 
an improvement in performance as training size increases.



Concluding remarks

Preliminary QRENN Concluding remarks



Conclusion

• Recent developments in the Quantum Machine Learning

• From Lie algebra to quantum neural networks

• Dynamical Lie algebra for barren plateaus

• Quantum Recurrent Embedding Neural Network

• Inspiration to QNNs design ⇒ QRENN

• Can avoid BP in quantum supervised learning 

• Application in SPT phase detection

𝔤 = spanℝ 𝑖𝐻ଵ, 𝑖𝐻ଶ, ⋯ , 𝑖𝐻௅ ௅௜௘



~Thanks for watching~

QUAIR Group


