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Entanglement cones

Alice’s and Bob’s (original) spaces Cd ; Bipartite system Cd ⊗ Cd .
• Parameterization of Schmidt rank ≤ k pure states: |ψ⟩ =

∑k
i=1 |xi⟩ ⊗ |yi⟩.

• Schmidt number k states = Convex linear combination of Schmidt rank
≤ k pure states.

Denote by SNk the set of Schmidt number k states.
In particular, SN1 is the set of separable states, which are convex linear
combination of Schmidt rank 1 pure states.

The finer structure of entanglement – the following sequential relation:

SN1 ⊂ SN2 ⊂ · · · ⊂ SNk ⊂ · · · ⊂ SNd
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Dual cones: Schmidt number witnesses

An entanglement witness is an operator X ∈ Herm(Cd ⊗ Cd) that
• Tr(Xρ) ≥ 0 for any ρ ∈ SN1.
• Tr(Xρ) < 0 for at least one ρ /∈ SN1.

Generalization: (k -)block positivity. X ∈ Herm(Cd ⊗ Cd) is k -block-positive iff
• Tr(Xρ) ≥ 0 for any ρ ∈ SNk .

The duals of the cones of Schmidt number states, namely 1- to
k -block-positivities, are presented the following sequence:

BP1 ⊃ BP2 ⊃ · · · ⊃ BPk ⊃ · · · ⊃ BPd

Note: k -block-positivity and k -positivity are related via Choi–Jamiołkowski
isomorphism.
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Hierarchical semidefinite programs & relaxation

• NP-hard even when k = 1:
• certifying whether ρ ∈ Pos(Cd ⊗ Cd ) is in SNk or not;
• certifying whether X ∈ Herm(Cd ⊗ Cd ) is in BPk or not.

• When k = 1, hierarchical semidefinite programs (SDPs) based on
extendibility hierarchy (as well as Doherty-Parrilo-Spedalieri hierarchy)
and quantum de Finetti theorem, provide approximative solutions via:

Relaxation: separability → symmetric extendibility
• Exchangable extendibility hierarchy

Sep = Exc∞ ⊂ · · · ⊂ ExcN ⊂ · · · ⊂ Exc2 ⊂ Exc1 ⊂ POS.

Bosonic extendibility hierarchy (converging faster)

Sep = Ext∞ ⊂ · · · ⊂ ExtN ⊂ · · · ⊂ Ext2 ⊂ Ext1 ⊂ Pos .

Separable=Infinitely extendible!
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Extendibility hierarchy and quantum de Finetti theorem

Definition (Symmetric extendibility)
Exchangeable: A state ρAB ∈ ExcN if there exists a ρAB1···BN s.t.

• ρAB1···BN = πρAB1···BNπ
−1 for all π ∈ SN .

• TrB2···BN (ρAB1···BN ) = ρAB1 = ρAB.
N-Bose-extendible (N-BSE): A state ρ ∈ ExtN is defined by requiring
• ρAB1···BN = πρAB1···BN = ρAB1···BNπ for all π ∈ SN .

Lemma (Quantum de Finetti theorem)
If ρAB1...Bn is exchangable then∥∥∥∥∥ρAB1···Bn −

∫
U(d)

ξσA ⊗ σ⊗ndm(σ)

∥∥∥∥∥
1

≤ 4
nd2

N
. (1)

If ρAB1...Bn is Bose-symmetric then the bound is 4nd
N .
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Testing k-block positivity: optimization

We will focus on testing/certifying k -block-positivity (kBP).
Many related problems, e.g., the famous Distillability conjecture:

whether (I− 1
2
|ϕ4⟩⟨ϕ4|)⊗2 is in BP2 or not.

Definition (kBP testing: optimization)

Testing kBP through solving optimization problem:

min
ρ∈SNk (d ,d)

Tr(Xρ). (2)

Goals: approximately solve it via hierarchical SDPs, then answer how to:
• Reduce the SDPs by utilizing symmetries;
• Characterize the SDP complexity.
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Recast optimization problem via k -purification

Definition (Testing k -block-positivity via k -purification)

Let Xk = |ϕk ⟩⟨ϕk | ⊗ X where |ϕk ⟩ =
∑k

i=1 |ii⟩. Then X ∈ BPk iff Vk ≥ 0,

Vk = minTr(Xkρk ) ,

ρk ≥ 0 , and Trρk = 1 , and ρk ∈ Sep(Ckd ⊗ Ckd)︸ ︷︷ ︸
separable states

= SN1(Ckd ⊗ Ckd)︸ ︷︷ ︸
states with Schmidt number 1

.

Ckd ∼= Ck ⊗ Cd where Ck is the auxiliary space and Cd the original space.
The ρk has the same structure with Xk = |ϕk ⟩⟨ϕk | ⊗ X ,

ρk =
∑

|i0i1⟩⟨j0j1|︸ ︷︷ ︸
∈End(Ck⊗Ck )

⊗ ρi0i1;j0j1︸ ︷︷ ︸
∈End(Cd⊗Cd )

.

Indices i , j label the basis of auxiliary space, i.e., Ck = Span{|i⟩|i = 1, . . . , k}.
Remark: Vk ≤ 0 holds for any X ––– k -block-positive iff V = 0, otherwise.
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Approaching the optimization via extendibility hierarchy
It can be approximately solved by utilizing extendibility hierarchy.

Definition (Approaching k -block-positivity via hierarchical SDPs)

Let Xk ,N = Xk ⊗ I⊗(N−1)
kd . Then consider

SN := minTr(Xk ,Nρk ,N) ,

ρk ,N ≥ 0 , and Trρk ,N = 1 ,

ρk ,N ∈ Sym(Ckd ⊗ (Ckd)⊗N) .

S1 ≤ S2 ≤ · · · ≤ SN ≤ · · · ≤ S∞ = Vk due to the quantum de Finetti theorem

Sep = Ext∞ ⊂ · · · ⊂ ExtN ⊂ · · · ⊂ Ext2 ⊂ Ext1 = Pos .

where Extn = Trn−1Sym(Ckd ⊗ (Ckd)⊗n). We write

TrN−1Sym(Ckd ⊗ (Ckd)⊗N)
N→∞→ Sep(Ckd ⊗ Ckd) .
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For Schur-Weyl: from Ū ⊗ U to U⊗k

• The maximally entangled state |ϕk ⟩⟨ϕk | carries Ū ⊗ U-symmetry.
• We are able to convert the Ū ⊗ U-symmetry to U⊗k -symmetry, by linear

map E : Ck → (Ck )⊗(k−1) represented by matrix

Ea2...ak
i =

ϵa2...ak i√
(k − 1)!

,

or pictorially E : → 1

2
...

k−1

. The E never affects the entanglement.

• The maximally entangled state relates to Πk the projector of (1k ),

k(E† ⊗ Ik )Πk (E ⊗ Ik ) ≡ kE†ΠkE = |ϕk ⟩⟨ϕk | .

• U(k)-conjugate invariant: Πk = U⊗kΠkU†⊗k for all U ∈ U(k).
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Two symmetries

Ingredients for SDP in Def. 5 at generic level N:

Xk ,N := kΠk ⊗ I⊗(N−1)
k ⊗ X ⊗ I⊗(N−1)

d ,

ρk ,N =
∑

(E ⊗ I⊗N
k )|i0i1 . . . iN⟩⟨j0j1 . . . jN |(E† ⊗ I⊗N

k )⊗ ρi0i1...iN ,j0j1...jN︸ ︷︷ ︸
∈End(Cd⊗(Cd )⊗N)

.

SDP admits reduction from the following symmetries:
• U(k)-symmetry carried by auxiliary systems (Ck )⊗(N+k−1),

Xk ,N = (U⊗(N+k−1) ⊗ I⊗(N+1)
d )Xk ,N(U†⊗(N+k−1) ⊗ I⊗(N+1)

d ) , ∀U ∈ U(k) .

• SN -symmetry of Bob’s Ckd because of extendibility hierarchy,

ρk ,N = ∆(π)︸ ︷︷ ︸
:=π⊗π

ρk ,N = ρk ,N∆(π) , ∀π ∈ SN .
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U(k)-Reduced SDP associated with Young diagrams
Then U(k)-inv. state has the form w.r.t. λ-blocks [2025.22100]:

T (ρk ,N) =

∫
U(k)

g⊗(N+k−1)ρk ,Ng†⊗(N+k−1)
dg ∼=

⊕
λ⊢k N+k−1

wλρλ . (3)

• We have minTr(Xk ,Nρk ,N) = min{λ⊢k (N+k−1)} Tr(Xλρλ) from blocks

Xλ = kΠk ⊗ Pλ− ⊗ X ⊗ I⊗(N−1)
d ,

where λ = (λ1, . . . , λk ) and λ− = (λ1 − 1, . . . , λk − 1).

Definition (Reduced SDP with trace equality)

Let λ ⊢ (N + k − 1) with ρλ defined in Eq.(3), the reduced SDP is defined to be,

Sλ := minTr(Xλρλ) , (4)
subject to ρλ = ∆(π)ρλ = ρλ∆(π), ∀π ∈ SN , and Trρλ = 1 . (5)
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Two questions

The SDP Def.5 is solved by solving over all λ ⊢k (N + k − 1),

SN = min
λk⊢(N+k−1)

Sλ. (6)

The rest of the talk will address the following two questions:
• How to choose a family of Young diagrams (for defining hierarchy) such

that we can look at fewer diagrams meanwhile make k -block-positivity
testing still work?

• How to characterize the complexity such that the hierarchy collapse, the
k = d case, can be read from the characterization?
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Relaxing trace constraint: from equality to inequality

Definition (Reduced SDP with trace inequality)

We relax the trace constraint appeared in reduced SDP.

Wλ := minTr(Xλσλ) , (7)
subject to σλ = ∆(π)σλ = σλ∆(π), ∀π ∈ SN , and Trσλ ≤ 1 , (8)

If Sλ ≥ 0 then Wλ = 0 otherwise Wλ < 0.
Recall optimization problem Def.4 and note that:

• The optimization problem Def.4 is solved by pure state in the form of:

|φ⟩ =
∑

(E ⊗ Ik )|i0i1⟩ ⊗ (x ⊗ y)|i0i1⟩ , where x , y ∈ M(d , k) . (9)

• Let µ ⊢k N and Pµ the central projector of µ, consider the following SN -inv.
pure state :

|φµ⟩ =
∑

(E ⊗ Pµ)|i0i1 . . . iN⟩ ⊗ (x ⊗ y⊗N)|i0i1 . . . iN⟩ . (10)
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Key theorem in Sep 1

For our purpose, just look at the situation: Set N = kn − k + 1 with integer n,
and set µ = (n, (n − 1)k−1), λ = (nk ). We then look into W(nk ) with varying n
(Defining rectangular shape sequence),

(1k ), (2k ), . . . , (nk ), . . . , (∞k )

Theorem (Rectangular shape is sufficient for testing k -block-positivity)
Recall that Vk and SN are the optimal values of optimization problem Def. 4 and
SDP Def. 5 respectively. Then W(nk ) satisfies the following bound:

SN ≤ W(nk ) ≤
1
k2 Vk ≤ 0 . (11)

This theorem implies that the sign of W(nk ) is same as of Vk .
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Keys for the proof

• Setting µ = (n, (n − 1)k−1), λ = (nk ), we obtain

⟨φµ|Xλ|φµ⟩
⟨φµ|φµ⟩

=
dimYλ−

dimYµ︸ ︷︷ ︸
= n+k−1

k(kn−k+1)

⟨ϕk |(x ⊗ y)†X (x ⊗ y)|ϕk ⟩
Tr(x†x)Tr(y†y)︸ ︷︷ ︸
=Tr(Xk,1|φ⟩⟨φ|)

. (12)

• Once S(nk ) > 0 is detected for some n, we know Vk = 0.
• If S(nk ) ≤ 0, using W(nk ) = S(nk ) and SN = Skn−k+1 ≤ S(nk ), we get the

proof.
It concludes that rectangular shape is sufficient for testing k -block-positivity.
By letting n → ∞, the sequential SDPs with W(nk ) implies

S∞ = Vk ≤ W(∞k ) ≤
1
k2 Vk ≤ 0 .
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Perm-inv. Kraus operators on a Young diagram

Let λ ⊢k (N + k − 1) be any Young diagram.
• ρλ in Eq.(3) could be represented by Kλ,α (Choi theorem),

ρλ =
IUk

λ

dimUk
λ

⊗
∑

pλ,p′
λ

|pλ⟩⟨p′
λ| ⊗

∑
α

Kλ,α|pλ⟩⟨p′
λ|K

†
λ,α

• Kλ,α is exchangeable, i.e., Kλ,α = πKλ,απ
−1 for all π ∈ SN .

• Kλ,α is an intertwining map w.r.t. SN , i.e.,

Kλ,α ∈ HomSN (Yλ, (Cd)⊗(N+1)) ∼= Cd ⊗
⊕

µ⊂λ:µ↘λ−

Ud
µ ,

where µ come from Littlewood-Richardson.
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Computational resource of reduced SDP

We relate SDP complexity to the computational resource that consists of SDP
variables.

• SDP complexity (e.g., interior point method) can be characterized by the
size of unconstrained positive semidefinite (PSD) matrices, which is
equivalent to

# of linear indep. Kraus operators generating PSD matrices.
• Our SDP variables are generated by intertwining maps Kλ,α, hence, for

given Young diagram λ, its SDP complexity Cλ can be characterized by

Cλ = d ·
∑

µ⊂λ:µ↘λ−

dimUd
µ . (13)
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Complexity: by representation-theoretic formula

The nth-level SDP corresponds to rectangular Young diagram (nk ),
• Its µ is unique: µ = (n, (n − 1)k−1);
• Dimension dimUd

(n,(n−1)k−1)
is given by hook length formula for

semistandard Young tableaux, then the complexity is,

C(nk ) = d
k(d + n − 1)

k + n − 1

k∏
r=1

(d + n − r − 1)!(k − r)!
(k + n − r − 1)!(d − r)!

. (14)

Two corollaries:
• The complexity of testing kBP has same big O as testing (d − k)BP.
• Hierarchy collapse (independent on n) as k = d from Eq.(14).
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Hierarchy collapse from representation-theoretic viewpoint
Note that dimUd

(n,(n−1)k−1)
is equal to the dimension of the complementary

Young diagram, for the example of d = 5 and k = 3 at level n = 4,

•
•

• • • •
• • • •

If k = d = 5, then it is easy to read from

•
•
•
•



Summary

The main results:
• We formulate a hierarchical SDP approach for testing k -block-positivity, as

well as the symmetry reduction based on U(k)- and SN - symmetries.
• We show that the family of rectangular Young diagrams is sufficient for

testing k -block-positivity.
• We obtain the characterization of SDP complexity based on the family of

rectangular Young diagrams and read hierarchy collapse from the
complexity formula.

Thanks for your attention!
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