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Entanglement cones

Alice’s and Bob's (original) spaces C¢; Bipartite system C? @ CY.
e Parameterization of Schmidt rank < k pure states: |¢) = ZL |X) @ |yi)-
e Schmidt number k states = Convex linear combination of Schmidt rank
< k pure states.

Denote by SNy the set of Schmidt number k states.
In particular, SNy is the set of separable states, which are convex linear

combination of Schmidt rank 1 pure states.
The finer structure of entanglement - the following sequential relation:

SNy C SNy C --- C SNk C -+ C SNy
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Dual cones: Schmidt number witnesses

An entanglement witness is an operator X € Herm(C? ® C) that
e Tr(Xp) > 0for any p € SNj.
e Tr(Xp) < 0 for at least one p ¢ SNjy.

Generalization: (k-)block positivity. X € Herm(CY ® C) is k-block-positive iff
e Tr(Xp) > 0for any p € SNk.

The duals of the cones of Schmidt number states, namely 1- to
k-block-positivities, are presented the following sequence:

BPy DBP> D --- DBPy D --- D BPy

Note: k-block-positivity and k-positivity are related via Choi-Jamiotkowski
isomorphism.
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Hierarchical semidefinite programs & relaxation

e NP-hard even when k = 1:

e certifying whether p € Pos(C? ® C9) is in SN or not;
e certifying whether X € Herm(C? @ C9) is in BP4 or not.

e When k = 1, hierarchical semidefinite programs (SDPs) based on
extendibility hierarchy (as well as Doherty-Parrilo-Spedalieri hierarchy)
and quantum de Finetti theorem, provide approximative solutions via:

Relaxation: separability — symmetric extendibility
e Exchangable extendibility hierarchy

Sep = Excoo C -+ C Exey C -+ - C Exco C Exey C POS.
Bosonic extendibility hierarchy (converging faster)
Sep = Exty, C --- C Exty C --- C Extp C Exty C Pos.

Separable=Infinitely extendible!
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Extendibility hierarchy and quantum de Finetti theorem

Definition (Symmetric extendibility)
Exchangeable: A state pap € Excy if there exists a pag, ..., S.t.
® PAB;--By = 7TPAB1~~BN7Ti1 forall r Sn.
* Trp,..8,(PAB,.-By) = PAB, = PAB-
N-Bose-extendible (N-BSE): A state p € Exty is defined by requiring

® PAB;--By = TPAB;---By = PAB;---ByT forall = € Sn.

.

Lemma (Quantum de Finetti theorem)
If pas,...B, is exchangable then

2
< 419"

PAB; By — / £ © o®"dm(o) N
u(d)

1

If paB,..B, is Bose-symmetric then the bound is 4”—,\‘;’.

(1)

\,
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Testing k-block positivity: optimization

We will focus on testing/certifying k-block-positivity (kBP).
Many related problems, e.g., the famous Distillability conjecture:

whether (I — %\¢4><q§4])®2 is in BP, or not.

Definition (kBP testing: optimization)

Testing kBP through solving optimization problem:

i Tr(Xp). 2
peswkl?d,d) r(Xp) 2)

Goals: approximately solve it via hierarchical SDPs, then answer how to:
e Reduce the SDPs by utilizing symmetries;
e Characterize the SDP complexity.
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Recast optimization problem via k-purification

Definition (Testing k-block-positivity via k-purification)
Let Xy = |k (k| © X where |¢x) = 32K Jii). Then X € BPy iff # >0,

Yk = min Tr(Xxpk) ,

pk >0, and Trp, = 1, and px € Sep(CH @ CH) = SNy (CH © Ck9)
separable states states with Scarrnidt number 1

Ckd =~ Ck @ C? where CK is the auxiliary space and C? the original space.
The px has the same structure with Xy = |ox )Xok @ X,

p=>_ lioi)joit] ®  pigisios
€End(Ck®CK)  cEnd(CI®CH)

Indices i, j label the basis of auxiliary space, i.e., CK = Span{|i)|i = 1,...,k}.
Remark: 74 < 0 holds for any X --- k-block-positive iff ¥ = 0, otherwise.
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Approaching the optimization via extendibility hierarchy

It can be approximately solved by utilizing extendibility hierarchy.

Definition (Approaching k-block-positivity via hierarchical SDPs)

Let X v = Xk ® TN Then consider

N = min Tr(Xk nokn) 5
Pk,N > 07 and Trpk,N =1 5
pk.N € Sym(CH @ (CRa)@N) |

A< I < - < Iy < - < S = Y, due to the quantum de Finetti theorem
Sep = Exto C -+ C Exty C -+ C Extp C Exty = Pos.

where Ext, = Tr,_1Sym(C* @ (Ck9)®"), We write

Trn_1Sym(Ck @ (Ch)oN) V222 gep(Chd & CHO)
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For Schur-Weyl: from U @ U to U®k

e The maximally entangled state |¢x)(¢x| carries U @ U-symmetry.
e We are able to convert the U ® U-symmetry to U®X-symmetry, by linear
map & : Ck — (CK)2(=1) represented by matrix

gk _ €a,...a,i

P/ k=D1

or pictorially & : D — The & never affects the entanglement.

2

e The maximally entangled state relates to I, the projector of (1%),
K(ET @ TNk (E @ k) = kETNKE = |pr )| -

e U(k)-conjugate invariant: My = U®kI'IkUT®k for all U € U(k).
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Two symmetries

Ingredients for SDP in Def. 5 at generic level N:

Xk,N = kI‘Ik ® H%(N_” QX® ]I?(N_U s

Pk.N = Z(E ® H%N)’ioh o An)oft - -jN’(ng ® H%N) Q@ Pl ...insfoji ---Jn
—_————

€End(CI®(Cd)®N)

SDP admits reduction from the following symmetries:
e U(k)-symmetry carried by auxiliary systems (CK)®(N+k=1),

N-+k—1)

Xy = (UENHD @ 5NV x (U™ 212MY U € U).

)

e Sy-symmetry of Bob's Ck? because of extendibility hierarchy,

pkN = A(T) pen = prNA(T), VT € Sh .
~——

=TT
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U(k)-Reduced SDP associated with Young diagrams

Then U(k)-inv. state has the form w.r.t. A\-blocks [2025.22100]:
N+k—1)

T(pkN) = / g®(N+k_1)Pk,NgT®( dg = @ WP - (3)
U(k) A N-k—1
e We have min Tr(Xk’Npk’N) = min{AFk(NJ’,kf‘l)} TI‘(X)\p)\) from blocks

Xy = kM@ Py~ @ X 1oN1

where A = (A1,..., )and A= = (A —1,..., A —1).

Definition (Reduced SDP with trace equality)

Let A\ (N + k — 1) with p, defined in Eq.(3), the reduced SDP is defined to be,

y)\ = min TI'(X)\,O/\), (4)
subject to py = A(m)pr = praA(r), Vr € Sy, and Trpy = 1. (5)
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Two questions

The SDP Def.5 is solved by solving over all A ¢ (N+ k—1),

I = Akk(rlv—ll-nk—ﬂ I ()

The rest of the talk will address the following two questions:

e How to choose a family of Young diagrams (for defining hierarchy) such
that we can look at fewer diagrams meanwhile make k-block-positivity
testing still work?

e How to characterize the complexity such that the hierarchy collapse, the
k = d case, can be read from the characterization?
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Relaxing trace constraint: from equality to inequality

Definition (Reduced SDP with trace inequality)

We relax the trace constraint appeared in reduced SDP.

Wy = minTr(Xy\o,), (7)
subjectto o) = A(w)oy = 0)\A(7), Vr € Sy, and Troy < 1, (8)

If #\ > 0then #, = 0 otherwise #, < 0.

Recall optimization problem Def.4 and note that:
e The optimization problem Def.4 is solved by pure state in the form of:

o) = Z(E @ Ix)lioh) ® (x ® y)liolt), where x,y € M(d, k). (9)
* Let 4 4 N and P, the central projector of 1, consider the following Sy-inv.
pure state:

ou) = D (€@ Pulioh - in) © (x @ y*N)ligh ... i) . (10)



Rectangular Young diagrams are sufficient
0000

Key theorem in Sep 1

For our purpose, just look at the situation: Set N = kn — k + 1 with integer n,
and set u = (n, (n—1)k="), A = (n¥). We then look into #{,x, with varying n
(Defining rectangular shape sequence),

(15), (25),...,(n"),..., (%)

Theorem (Rectangular shape is sufficient for testing k-block-positivity)

Recall that ¥} and .#y are the optimal values of optimization problem Def. 4 and
SDP Def. 5 respectively. Then %, satisfies the following bound:

1
INE Wiy < 357 0. (an

This theorem implies that the sign of 7/, is same as of 7.
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Keys for the proof

e Setting = (n,(n—1)k=1), A = (n¥), we obtain

(pulXalpn) _ dim Ya- (gil(x @ y)TX(x @ y)| k) .

S (12)
<‘Pu‘¢u> dimY, Tr(xTx)Tr(yTy)
A,_/
=% =Tr(Xk,11e)el)

* Once ¥« > 0 is detected for some n, we know ¥y = 0.
o |f Sy < 0, USING W1y = S (1) and AN = Fkn_ki1 < S k) We get the
proof.

It concludes that rectangular shape is sufficient for testing k-block-positivity.
By letting n — oo, the sequential SDPs with %, implies
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Perm-inv. Kraus operators on a Young diagram

Let A ¢ (N+ k — 1) be any Young diagram.
® p,in Eq.(3) could be represented by K, , (Choi theorem),

(9] Z ]p,\ p)\|®ZK)\a’p)\ <p)\|K)J\ra
p)np)\

PA= dlmUk

* K. is exchangeable, i.e., K\, = WKA,oﬂr*‘ for all m € Sy.
* K. is an intertwining map w.r.t. Sy, i.e.,

K/\,a € HOl’nsN(Y)\, ((Cd)®(N+1)) ~ 9 ® @ Ug,
HCANAT

where 1 come from Littlewood-Richardson.
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Computational resource of reduced SDP

We relate SDP complexity to the computational resource that consists of SDP
variables.

e SDP complexity (e.g., interior point method) can be characterized by the
size of unconstrained positive semidefinite (PSD) matrices, which is
equivalent to

# of linear indep. Kraus operators generating PSD matrices.

® Our SDP variables are generated by intertwining maps Kj ., hence, for
given Young diagram ), its SDP complexity Cy can be characterized by

Ci=d- Y dimUJ. (13)
PCANAT
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Complexity: by representation-theoretic formula

The nth-level SDP corresponds to rectangular Young diagram (n),
e Its p is unique: p = (n,(n— 1)k
e Dimension dim UY 1)1 is given by hook length formula for

(ny(
semistandard Young tableaux, then the complexity is,

(14)

k(d+n—1) {5 (d+n—r—1)i(k—r)!
1_[1(k+n—r—1)!(d—r)!'

Two corollaries:
e The complexity of testing kBP has same big O as testing (d — k)BP.
e Hierarchy collapse (independent on n) as k = d from Eq.(14).
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Hierarchy collapse from representation-theoretic viewpoint

Note that dim Ufjn (n—1)k-1) is equal to the dimension of the complementary

Young diagram, for the example of d =5 and k = 3 at level n = 4,

If Kk = d =5, then itis easy to read from




Summary

The main results:

e We formulate a hierarchical SDP approach for testing k-block-positivity, as
well as the symmetry reduction based on U(k)- and Sy- symmetries.

e We show that the family of rectangular Young diagrams is sufficient for
testing k-block-positivity.

e We obtain the characterization of SDP complexity based on the family of
rectangular Young diagrams and read hierarchy collapse from the
complexity formula.

Thanks for your attention!
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