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I
Groups

A finite group G is a finite set of elements together with a binary operation (·)
that satisfy following group axioms:

I Closure : For all x , y in G , (x · y) ∈ G .

I Associativity : For all x , y and z in G , (x · (y · z)) = ((x · y) · z).

I Identity : There exists an element e in G such that, for every element a in
G , the equation (a · e) = (e · a) = a holds.

I Inverse : For each x in G , there exists an element y in G such that
(x · y) = (y · x) = e.
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I
Group Representations

I Cayley Table representation:

* e a b c d

e e a b c d
a a b c d e
b b c d e a
c c d e a b
d d e a b c

I Permutation Group representation: G = ⟨π1, . . . , πt⟩ ≤ Sn

I Matrix Group representation: G = ⟨M1, . . . ,Mt⟩ ≤ GL(d , q)

I Black-box Group Representation

One of the most general ways to work with finite groups

□ Depending on what representation is used a computational problem can
become very easy or extremely challenging.
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I
Black-box Representation:

I G = ⟨g1, . . . , gt⟩

I Each element of G is represented by a binary string of length O(log |G |)
bits.

I We have two oracles available at unit cost:

I String representing g and g ′ → Multiplication Oracle → String
representing gg ′.

I String representing g → Inverse Oracle → String representing g−1.

□ In the quantum setting,

I we can feed quantum superpositions of elements to the oracles

I we assume that each element is encoded by a unique binary string (as in
all prior works).

□ Since the group is generated by O(log |G |) elements, the input size is
O(log |G |)2 bits.
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I
Group Order

Group Order

Input: A group G as a black-box representation.

Question: Compute |G |

Group Order Verification

Input: A group G as a black-box representation and an integer m.

Question: Decide if |G | = m

I One of the most fundamental problem over groups
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I
Prior Work

I Classical bounds:

I Requires exponential time (in log |G |),
even for cyclic groups

I Best upper bound on its complexity is the
class AM. [Babai 1992]

I Quantum polynomial time algorithms:

I Cyclic groups [Shor 1994]

I Abelian groups [Kitaev 1995]

I Solvable groups [Watrous 2000]

An Open Question:

What about arbitrary groups? Is it in QMA [Watrous 2000]?

Our Result: Group Order Verification is in QCMA!
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I
Consequences for Group Non-Membership

Group Membership

Input: A group G as a black-box representation, H ≤ G , and g ∈ G .

Question: Decide if g ∈ H

Group Non-Membership

Input: A group G as a black-box representation H ≤ G , and g ∈ G .

Question: Decide if g ̸∈ H
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I
I Group Membership is in NP [Babai and Szemerédi, 1984]

I Group Non-Membership is in QMA [Watrous, 2000]

I Group Non-Membership is in QCMA under some group-theoretic
assumptions [Aaronson and Kuperberg, 2007]

I Conjecture: Group Non-Membership is in QCMA

I Solved!
Algorithm for Group Order gives a way to check Membership

g ∈ H if and only if |⟨H, g⟩| = |H|
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I
Proof Strategy

Group Order Verification: A group G as a black-box representation and an
integer m. Decide if |G | = m.

□ Group Order Divisor Verification: Decide if m divides |G |.

□ Group Order Multiple Verification: Decide if |G | divides m.
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I
Theorem 1 Group Order Divisor Verification is in QCMA.

Proof Idea:

I Let m = pa1
1 · · · par

r be the prime decomposition of m.

I Claim: m divides |G | iff G has a subgroup Hi if order pai
i , for each i .

I A group of order pa, for a prime p and integer a is solvable.

I The prover sends a set of generators for each Hi .

I The verifier checks that Hi solvable, and then check if |Hi | = pai
i using

Watrous’ algorithm for solvable groups.

10



I
Theorem 2 Group Order Multiple Verification is in QCMA.

⋆ Remaining part of the talk.
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I
Checking that |G | divides m: Strategy

I A group with no nontrivial normal subgroup is called Simple group.

I A composition series of G is a list of subgroups H0,H1, . . . ,Hs for some
integer s, such that

I {e} = H0 ⊴ H1 ⊴ · · ·⊴ Hs = G ;

I the quotient group Hi/Hi−1 is simple group for each i ∈ [s].

I Each group has a composition series but it is unknown how to compute it
efficiently.

I |H0| · |H1/H0| · |H2/H1| · · · |Hs/Hs−1| = |G |

This suggests a strategy to compute |G |

(i) ask the prover to send a composition series

(ii) check that each Hi/Hi−1 is simple and compute its order
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I
Remark: The “classification theorem of finite simple groups” (about
15,000-page long proof) states that every finite simple group belongs to one of
18 infinite families of simple groups, or is one of 26 sporadic simple groups. As
a consequence, each simple group can be described by a short string called its
standard name (its order can be easily obtained from its standard name).
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I
(i) Ask the prover to send a composition series and the standard name wi of

Hi/Hi−1

(ii) Check: Hi/Hi−1 is isomorphic to the simple group with standard name wi

I For the 26 sporadic simple groups this is trivial (since they have
constant order)

I For 17 of the infinite families, this can be done in classical polynomial
time using a classical witness using the presentation-test (witness: a
short presentation of the simple group in terms of generators and
relations)

I We do not know how to do it for the “Ree groups”, since it is
unknown if Ree groups have a short presentation

Use a randomized homomorphism test.
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I
I The family Ree groups of rank 1 indexed by a positive integer a. Write

q = 32a+1. The Ree group of rank one, which we denote by R(q), is the
subgroup of GL(7, q) generated by the following three matrices:

Γ1 =



1 1 0 0 −1 −1 1
0 1 1 1 −1 0 −1
0 0 1 1 −1 0 1
0 0 0 1 1 0 0
0 0 0 0 1 −1 1
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


, Γ2 =



0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
0 0 −1 0 0 0 0
0 −1 0 0 0 0 0
−1 0 0 0 0 0 0


,

Γ3 =



ωt 0 0 0 0 0 0
0 ω1−t 0 0 0 0 0
0 0 ω2t−1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 ω1−2t 0 0
0 0 0 0 0 ωt−1 0
0 0 0 0 0 0 ω−t


,

where t = 3a and ω be a primitive element of Fq. The order of R(q) is
q3(q3 + 1)(q − 1). 15



I
Second Trial: Randomized Homomorphism Test for the Ree Group

Goal: check if a group Σ is isomorphic to a known group S (think of
Σ = Hi/Hi−1 and S = ⟨s1, . . . , sk⟩ = R(q)).

I We ask Prover to send elements g1, . . . , gk ∈ Σ.

I If Σ ∼= S and Prover is honest, he will send gi = ϕ(si ) for each i ∈ [k], for
some isomorphism ϕ : S → Σ.

I For the checking procedure, Verifier defines a map f : S → Σ by extending
the partial map si 7→ gi into a map on all S as if it were a homomorphism.

I For instance, for an element s ∈ S that can be written as s = s1s2s1s3,
Verifier will set f (s) = g1g2g1g3.

I Verifier takes two elements s and s ′ uniformly at random in S and checks if
f (ss ′) = f (s)f (s ′) ⇐⇒ f (ss ′)f (s ′)−1f (s)−1 ∈ Hi−1 (1)
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I
To be successful, this approach has to satisfy three important requirements:

A. Verifier needs to be able to efficiently represent an arbitrary element s ∈ S

as a product of elements from the fixed set {s1, . . . , sk}. This
representation should also be unique for f to be well-defined.
• For S = R(q) ([Babai, Beals, Seress 2009]+ quantum algorithms)

B. Verifier needs to be able to efficiently check that the homomorphism is
actually an isomorphism, i.e., a bijection.
• “easy” for S = R(q) (since a simple group has no nontrivial normal
subgroup)

C. Verifier needs to be able to efficiently check if f (ss ′)f (s ′)−1f (s)−1 ∈ Hi−1

holds.
• Seems hard for arbitrary Hi−1, but Membership testing in Solvable group
is in BQP [Watrous, 2000]
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(Modified) Babai-Beals filtration [Babai and Beals, 1999]:

For any group G , there exists a solvable subgroup H0 and elements
β1, . . . , βs , γ1, . . . , γs ∈ G such that when defining Hi = ⟨H0, β1, γ1, . . . , βi , γi ⟩
for each i ∈ [s] we have

{e}⊴ H0 ⊴ H1 ⊴ · · ·⊴ Hs ⊴ Pker(G)⊴ G

I G/Pker(G) ≤ Sym(s)

I Pker(G)/Hs solvable;

I Each Hi/Hi−1 is simple;

I Hi/Hi−1 ∼= ⟨H0, βi , γi ⟩/H0 , for all i ∈ [s]
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I
Conclusion

Group Order Verification
Input: A group G as a black-box representation and an integer m.
Question: Decide if |G | = m

Open Problem [Watrous, 2000]
Is Group Order Verification in QMA? SOLVED!

Group Non-Membership
Input: A group G as a black-box representation, H ≤ G , and g ∈ G .
Question: Decide if g ̸∈ H

Conjecture [Aaronson and Kuperberg, 2007]
Group Non-Membership is in QCMA. SOLVED!

Thank you! Questions?
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