Group Order is in QCMA Joint work with François Le Gall and Harumichi Nishimura To appear in FOCS 2025 #### Dhara Thakkar Graduate School of Mathematics, Nagoya University September 24th, 2025 Shenzhen-Nagoya Workshop on Quantum Science 2025 ### Groups A finite group G is a finite set of elements together with a binary operation (\cdot) that satisfy following group axioms: - **★** Closure : For all x, y in $G, (x \cdot y) \in G$. - * Associativity: For all x, y and z in G, $(x \cdot (y \cdot z)) = ((x \cdot y) \cdot z)$. - * Identity: There exists an element e in G such that, for every element a in G, the equation $(a \cdot e) = (e \cdot a) = a$ holds. - * Inverse : For each x in G, there exists an element y in G such that $(x \cdot y) = (y \cdot x) = e$.) ## **Group Representations** Cayley Table representation: | * | е | а | b | С | d | |---|------------------|---|---|---|---| | е | е | а | b | С | d | | а | а | b | С | d | е | | b | b | С | d | е | а | | С | С | d | е | а | b | | d | e
a
b
c | е | а | b | С | | | | | | | | - ▶ Permutation Group representation: $G = \langle \pi_1, \dots, \pi_t \rangle \leq S_n$ - **★** Matrix Group representation: $G = \langle M_1, \ldots, M_t \rangle \leq \operatorname{GL}(d, q)$ - ◆ Black-box Group Representation One of the most general ways to work with finite groups \square Depending on what representation is used a computational problem can become very easy or extremely challenging. #### Black-box Representation: - $G = \langle g_1, \ldots, g_t \rangle$ - Each element of G is represented by a binary string of length O(log |G|) bits. - ★ We have two oracles available at unit cost: - * String representing g and $g' \to Multiplication Oracle <math>\to$ String representing gg'. - * String representing $g \to \text{Inverse Oracle} \to \text{String representing } g^{-1}$. - \square In the quantum setting, - we can feed quantum superpositions of elements to the oracles - we assume that each element is encoded by a unique binary string (as in all prior works). - \square Since the group is generated by $O(\log |G|)$ elements, the input size is $O(\log |G|)^2$ bits. ### **Group Order** ## **Group Order** Input: A group *G* as a black-box representation. Question: Compute | *G* | ### **Group Order Verification** Input: A group G as a black-box representation and an integer m. Question: Decide if |G| = m One of the most fundamental problem over groups #### **Prior Work** - Classical bounds: - Requires exponential time (in log |G|), even for cyclic groups - Best upper bound on its complexity is the class AM. [Babai 1992] - Quantum polynomial time algorithms: - Cyclic groups [Shor 1994] - Abelian groups [Kitaev 1995] - Solvable groups [Watrous 2000] ## An Open Question: What about arbitrary groups? Is it in QMA [Watrous 2000]? Our Result: Group Order Verification is in QCMA! # Consequences for Group Non-Membership # **Group Membership** Input: A group G as a black-box representation, $H \leq G$, and $g \in G$. Question: Decide if $g \in H$ ### **Group Non-Membership** Input: A group G as a black-box representation $H \leq G$, and $g \in G$. Question: Decide if $g \notin H$ - Group Membership is in NP [Babai and Szemerédi, 1984] - * Group Non-Membership is in QMA [Watrous, 2000] - * Group Non-Membership is in QCMA under some group-theoretic assumptions [Aaronson and Kuperberg, 2007] - * Conjecture: Group Non-Membership is in QCMA - * Solved! Algorithm for Group Order gives a way to check Membership $g \in H \text{ if and only if } |\langle H,g \rangle| = |H|$ # **Proof Strategy** Group Order Verification: A group G as a black-box representation and an integer m. Decide if |G| = m. - \square Group Order **Divisor** Verification: Decide if m divides |G|. - \square Group Order **Multiple** Verification: Decide if |G| divides m. #### **Theorem 1** Group Order Divisor Verification is in QCMA. #### Proof Idea: - * Let $m = p_1^{a_1} \cdots p_r^{a_r}$ be the prime decomposition of m. - * Claim: m divides |G| iff G has a subgroup H_i if order $p_i^{a_i}$, for each i. - * A group of order p^a , for a prime p and integer a is solvable. - ▶ The prover sends a set of generators for each H_i . - * The verifier checks that H_i solvable, and then check if $|H_i| = p_i^{a_i}$ using Watrous' algorithm for solvable groups. # Theorem 2 Group Order Multiple Verification is in QCMA. \star Remaining part of the talk. # Checking that |G| divides m: Strategy - ★ A group with no nontrivial normal subgroup is called Simple group. - * A composition series of G is a list of subgroups H_0, H_1, \ldots, H_s for some integer s, such that - $\{e\} = H_0 \unlhd H_1 \unlhd \cdots \unlhd H_s = G;$ - * the quotient group H_i/H_{i-1} is **simple group** for each $i \in [s]$. - Each group has a composition series but it is unknown how to compute it efficiently. - * $|H_0| \cdot |H_1/H_0| \cdot |H_2/H_1| \cdots |H_s/H_{s-1}| = |G|$ This suggests a strategy to compute |G| - (i) ask the prover to send a composition series - (ii) check that each H_i/H_{i-1} is simple and compute its order **Remark:** The "classification theorem of finite simple groups" (about 15,000-page long proof) states that every finite simple group belongs to one of 18 infinite families of simple groups, or is one of 26 sporadic simple groups. As a consequence, each simple group can be described by a short string called its standard name (its order can be easily obtained from its standard name). - (i) Ask the prover to send a composition series and the standard name w_i of H_i/H_{i-1} - (ii) Check: H_i/H_{i-1} is isomorphic to the simple group with standard name w_i - For the 26 sporadic simple groups this is trivial (since they have constant order) - For 17 of the infinite families, this can be done in classical polynomial time using a classical witness using the presentation-test (witness: a short presentation of the simple group in terms of generators and relations) - * We do not know how to do it for the "Ree groups", since it is unknown if Ree groups have a short presentation Use a randomized homomorphism test. * The family Ree groups of rank 1 indexed by a positive integer a. Write $q = 3^{2a+1}$. The Ree group of rank one, which we denote by R(q), is the subgroup of GL(7,q) generated by the following three matrices: $$\Gamma_1 = \begin{bmatrix} 1 & 1 & 0 & 0 & -1 & -1 & 1 \\ 0 & 1 & 1 & 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \Gamma_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$ $$\Gamma_3 = \begin{bmatrix} \omega^t & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \omega^{1-t} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \omega^{2t-1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \omega^{1-2t} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \omega^{t-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \omega^{-t} \end{bmatrix},$$ where $t=3^{a}$ and ω be a primitive element of \mathbb{F}_{q} . The order of $\mathrm{R}(q)$ is $q^{3}(q^{3}+1)(q-1)$. ### Second Trial: Randomized Homomorphism Test for the Ree Group **Goal**: check if a group Σ is isomorphic to a known group S (think of $\Sigma = H_i/H_{i-1}$ and $S = \langle s_1, \ldots, s_k \rangle = R(q)$). - **★** We ask Prover to send elements $g_1, ..., g_k ∈ Σ$. - **★** If $\Sigma \cong S$ and Prover is honest, he will send $g_i = \phi(s_i)$ for each $i \in [k]$, for some isomorphism $\phi: S \to \Sigma$. - * For the checking procedure, Verifier defines a map $f: S \to \Sigma$ by extending the partial map $s_i \mapsto g_i$ into a map on all S as if it were a homomorphism. - * For instance, for an element $s \in S$ that can be written as $s = s_1 s_2 s_1 s_3$, Verifier will set $f(s) = g_1 g_2 g_1 g_3$. - * Verifier takes two elements s and s' uniformly at random in S and checks if $f(ss') = f(s)f(s') \iff f(ss')f(s')^{-1}f(s)^{-1} \in H_{i-1}$ (1) To be successful, this approach has to satisfy three important requirements: - A. Verifier needs to be able to efficiently represent an arbitrary element $s \in S$ as a product of elements from the fixed set $\{s_1, \ldots, s_k\}$. This representation should also be unique for f to be well-defined. - For S = R(q) ([Babai, Beals, Seress 2009]+ quantum algorithms) - B. Verifier needs to be able to efficiently check that the homomorphism is actually an isomorphism, i.e., a bijection. - \bullet "easy" for S = R(q) (since a simple group has no nontrivial normal subgroup) - C. Verifier needs to be able to efficiently check if $f(ss')f(s')^{-1}f(s)^{-1} \in H_{i-1}$ holds. - Seems hard for arbitrary H_{i-1} , but Membership testing in Solvable group is in BQP [Watrous, 2000] #### (Modified) Babai-Beals filtration [Babai and Beals, 1999]: For any group G, there exists a solvable subgroup H_0 and elements $\beta_1, \ldots, \beta_s, \gamma_1, \ldots, \gamma_s \in G$ such that when defining $H_i = \langle H_0, \beta_1, \gamma_1, \ldots, \beta_i, \gamma_i \rangle$ for each $i \in [s]$ we have $$\{e\} \unlhd H_0 \unlhd H_1 \unlhd \cdots \unlhd H_s \unlhd \operatorname{Pker}(G) \unlhd G$$ - * $G/\operatorname{Pker}(G) \leq Sym(s)$ - ♣ Pker(G)/H_s solvable; - * Each H_i/H_{i-1} is simple; - ullet $H_i/H_{i-1}\cong \langle H_0, \beta_i, \gamma_i \rangle/H_0$, for all $i\in [s]$ #### Conclusion ### **Group Order Verification** Input: A group G as a black-box representation and an integer m. Question: Decide if |G| = m Open Problem [Watrous, 2000] Is Group Order Verification in QMA? SOLVED! ### **Group Non-Membership** Input: A group G as a black-box representation, $H \leq G$, and $g \in G$. Question: Decide if $g \notin H$ **Conjecture** [Aaronson and Kuperberg, 2007] Group Non-Membership is in QCMA. SOLVED! Thank you! Questions?